精英家教网 > 高中数学 > 题目详情
12.若sinx+sin($\frac{π}{2}$+x)=$\frac{\sqrt{2}}{3}$,则cos($\frac{π}{4}$-x)等于(  )
A.-$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{2}}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

分析 利用诱导公式将已知条件转化为$\sqrt{2}$cos(x-$\frac{π}{4}$)=$\frac{\sqrt{2}}{3}$,易得cos($\frac{π}{4}$-x)的值.

解答 解:∵sinx+sin($\frac{π}{2}$+x)=$\frac{\sqrt{2}}{3}$,
∴sinx+sin($\frac{π}{2}$+x)=sinx+cosx=$\sqrt{2}$cos(x-$\frac{π}{4}$)=$\frac{\sqrt{2}}{3}$,
∴cos($\frac{π}{4}$-x)=$\frac{1}{3}$.
故选:D.

点评 本题考查的知识点是两角和与差的余弦公式,诱导公式,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.椭圆$\frac{x^2}{{{{10}^{\;}}}}+\frac{y^2}{{{m^{\;}}}}=1$的焦距为6,则m的值为(  )
A.m=1B.m=19C.m=1 或 m=19D.m=4或m=16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知定义域为R的函数y=f(x)满足f(x+2)=f(x),且-1≤x<1时,f(x)=1-x2;函数g(x)=$\left\{\begin{array}{l}{lg|x|,x≠0}\\{1,x=0}\end{array}\right.$,若F(x)=f(x)-g(x),则x∈[-5,10],函数F(x)零点的个数是15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,两个椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{9}$=1内部重叠区域的边界记为曲线C,P是曲线C上任意一点,给出下列三个判断:
①P到F1(-4,0)、F2(4,0)、E1(0,-4)、E2(0,4)四点的距离之和为定值;
②曲线C关于直线y=x、y=-x均对称;
③曲线C所围区域面积必小于36.
上述判断中正确命题的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算
(1)$(0.027{)^{-\frac{1}{3}}}-(-\frac{1}{7}{)^{-2}}+(2\frac{7}{9}{)^{\frac{1}{2}}}-(\sqrt{2}-1{)^0}$
(2)log2$\frac{{\sqrt{7}}}{{\sqrt{48}}}+{log_2}12-\frac{1}{2}{log_2}42-{log_2}$2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设i是虚数单位,若(z-l)(1+i)=1-i,则复数z等于1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=$\left\{\begin{array}{l}x^2,x≥0\\ ln(-x),x<0\end{array}$,则函数g(x)=f(x)-x的零点的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,过焦点垂直于长轴的弦的弦长为$\frac{{2\sqrt{3}}}{3}$.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A,B两点,坐标原点O到直线l的距离为$\frac{\sqrt{3}}{2}$,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{ax+b}{{{x^2}+c}}$(a{N*,b∈R,0<c≤1)定义在[-1,1]上的奇函数,f(x)的最大值为$\frac{1}{2}$,且f(1)>$\frac{2}{5}$.
( I)求函数f(x)的解析式;
( II)判断函数f(x)的单调性;并证明你的结论;
( III)当存在x∈[$\frac{1}{2}$,1]使得不等式f(mx-x)+f(x2-1)>0成立时,请同学们探究实数m的所有可能取值.

查看答案和解析>>

同步练习册答案