精英家教网 > 高中数学 > 题目详情
7.计算
(1)$(0.027{)^{-\frac{1}{3}}}-(-\frac{1}{7}{)^{-2}}+(2\frac{7}{9}{)^{\frac{1}{2}}}-(\sqrt{2}-1{)^0}$
(2)log2$\frac{{\sqrt{7}}}{{\sqrt{48}}}+{log_2}12-\frac{1}{2}{log_2}42-{log_2}$2.

分析 (1)根据指数的运算性质,代入运算可得答案;
(2)根据对数的运算性质,代入运算可得答案

解答 解:(1)$(0.027{)^{-\frac{1}{3}}}-(-\frac{1}{7}{)^{-2}}+(2\frac{7}{9}{)^{\frac{1}{2}}}-(\sqrt{2}-1{)^0}$
=(0.3)-1-49+$\frac{5}{3}$-1
=-45,
(2)log2$\frac{{\sqrt{7}}}{{\sqrt{48}}}+{log_2}12-\frac{1}{2}{log_2}42-{log_2}$2.
=$lo{g}_{2}(\frac{\sqrt{7}}{\sqrt{48}}×12÷\sqrt{42}÷2)$
=$lo{g}_{2}\frac{1}{\sqrt{8}}$
=-$\frac{3}{2}$

点评 本题考查的知识点是指数的运算性质,对数的运算性质,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知x,y满足不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$,
求(1)z=x+2y的最大值;
(2)z=x2+y2-10y+25的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=f(x)是最小正周期为4的偶函数,且在x∈[-2,0]时,f(x)=2x+1,若存在x1,x2,…xn满足0≤x1<x2<…<xn,且|f(x1)-f(x2)|+|f(x2)-f(x1)|+…+|f(xn-1-f(xn))|=2016,则n+xn的最小值为1513.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.将6辆不同的小汽车和2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中2辆卡车必须停在A与B的位置,那么不同的停车位置安排共有40320种?(结果用数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知某公司现有职员120人,中级管理人员30人,高级管理人员10人,要从其中抽取32个人进行身体健康检查,如果采用分层抽样的方法,则职员中“中级管理人员“和“高级管理人员”各应该抽取的人数为(  )
A.8,2B.8,3C.6,3D.6,2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若sinx+sin($\frac{π}{2}$+x)=$\frac{\sqrt{2}}{3}$,则cos($\frac{π}{4}$-x)等于(  )
A.-$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{2}}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某班同学参加社会实践活动,对本市25~55岁年龄段的人群进行某项随机调查,得到各年龄段被调查人数的频率分布直方图如图(部分有缺损):
(1)补全频率分布直方图(需写出计算过程);
(2)现从[40,55)岁年龄段样本中采用分层抽样方法抽取6人分成A、B两个小组(每组3人)参加户外体验活动,记A组中年龄在[40,45)岁的人数为ξ,
求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设A={(x,y)|y=x+1,x∈R},B={(x,y)|y=-2x+4,x∈R},则A∩B={(1,2)}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,角A,B,C所对的边分别为a,b,c,那么a>b是sinA>sinB的(  )条件.
A.充分不必要B.必要不充分C.充分且必要D.无关

查看答案和解析>>

同步练习册答案