分析 (1)作出不等式组对应的平面区域,利用直线平行进行求解即可.
(2)z的几何意义是两点间的距离的平方,利用点到直线的距离公式进行求解即可.
解答 解:(1)由约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$表示的可行域如下图所示,![]()
由z=x+2y,得y=-$\frac{1}{2}x+\frac{z}{2}$,
平移直线y=-$\frac{1}{2}x+\frac{z}{2}$,由图象可知当直线y=-$\frac{1}{2}x+\frac{z}{2}$经过点A时,直线y=-$\frac{1}{2}x+\frac{z}{2}$的截距最大,此时z最大,
由$\left\{\begin{array}{l}{x-y+2=0}\\{2x-y-5=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=7}\\{y=9}\end{array}\right.$,即A(7,9),此时z=7+2×9=25;
(2)z=x2+y2-10y+25=x2+(y-5)2,z的几何意义为点P(x,y)到点(0,5)的距离的平方;
由图知,最小值为(0,5)到直线x-y+2=0的距离的平方,
即d2=($\frac{|0-5+2|}{\sqrt{2}}$)2=$\frac{9}{2}$.经检验,垂足在线段AC上.
点评 本题主要考查线性规划的应用,可以直线平移以及两点间的距离公式是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m=1 | B. | m=19 | C. | m=1 或 m=19 | D. | m=4或m=16 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com