精英家教网 > 高中数学 > 题目详情
9.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左、右焦点分别是F1,F2,如果在椭圆上存在一点p,使∠F1PF2为钝角,则椭圆离心率的取值范围是$({\frac{{\sqrt{2}}}{2},1})$.

分析 由∠F1PF2为钝角,得到 $\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$<0有解,转化为c2>x02+y02有解,求出x02+y02的最小值后求得椭圆离心率的取值范围.

解答 解:设P(x0,y0),则|x0|<a,
又∠F1PF2为钝角,当且仅当 $\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$<0有解,
即c2>x02+y02有解,即c2>(x02+y02min
又y02=b2-$\frac{{b}^{2}}{{a}^{2}}$x02
∴x02+y02=b2+$\frac{{c}^{2}}{{a}^{2}}$x02∈[b2,a2),
即(x02+y02min=b2
故c2>b2,c2>a2-c2
∴$\frac{{c}^{2}}{{a}^{2}}$>$\frac{1}{2}$,即e>$\frac{\sqrt{2}}{2}$,
又0<e<1,
∴$\frac{\sqrt{2}}{2}$<e<1.
故答案为:$({\frac{{\sqrt{2}}}{2},1})$.

点评 本题考查了直线与圆锥曲线的关系,考查了平面向量数量积在解题中的应用,体现了数学转化思想方法,解答此题的关键在于把存在一点P使∠F1PF2为钝角转化为数量积小于0有解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=$\frac{4}{5}$|PD|.
(1)当P在圆上运动时,求点M的轨迹C的方程
(2)求过点(3,0),且斜率为$\frac{4}{5}$的直线被C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$f(x)={x^2}+\frac{1}{|x|}$的图象(  )
A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知x,y满足不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$,
求(1)z=x+2y的最大值;
(2)z=x2+y2-10y+25的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知抛物线C:x2=12y的焦点为F,准线为l,P∈l,Q是线段PF与C的一个交点,若|PF|=3|FQ|.则|FQ|=(  )
A.$\frac{9}{2}$B.$\frac{7}{2}$C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.f(x)是定义在R上的偶函数,且对任意的a,b∈(-∞,0],当a≠b时,都有$\frac{f(a)-f(b)}{a-b}>0$.若f(m+1)<f(2m-1),则实数m的取值范围为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数$f(x)=\frac{{4x-4{x^3}}}{{1+2{x^2}+{x^4}}}$在R上的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=f(x)是最小正周期为4的偶函数,且在x∈[-2,0]时,f(x)=2x+1,若存在x1,x2,…xn满足0≤x1<x2<…<xn,且|f(x1)-f(x2)|+|f(x2)-f(x1)|+…+|f(xn-1-f(xn))|=2016,则n+xn的最小值为1513.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某班同学参加社会实践活动,对本市25~55岁年龄段的人群进行某项随机调查,得到各年龄段被调查人数的频率分布直方图如图(部分有缺损):
(1)补全频率分布直方图(需写出计算过程);
(2)现从[40,55)岁年龄段样本中采用分层抽样方法抽取6人分成A、B两个小组(每组3人)参加户外体验活动,记A组中年龄在[40,45)岁的人数为ξ,
求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

同步练习册答案