精英家教网 > 高中数学 > 题目详情
14.f(x)是定义在R上的偶函数,且对任意的a,b∈(-∞,0],当a≠b时,都有$\frac{f(a)-f(b)}{a-b}>0$.若f(m+1)<f(2m-1),则实数m的取值范围为(0,2).

分析 由题意可得偶函数f(x)在(-∞,0]上单调递增,故它在(0,+∞)上单调递减,由不等式可得|m+1|>|2m-1|,由此求得m的取值范围.

解答 解:f(x)是定义在R上的偶函数,且对任意的a,b∈(-∞,0],当a≠b时,都有$\frac{f(a)-f(b)}{a-b}>0$,
故函数f(x)在(-∞,0]上单调递增,故它在(0,+∞)上单调递减.
若f(m+1)<f(2m-1),
则|m+1|>|2m-1|,3m2-6m<0,∴0<m<2,
故答案为:(0,2).

点评 本题主要考查函数的单调性和奇偶性的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若a>0且a≠1,则函数y=loga(x-1)+2的图象恒过定点(2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设2016∈{x,$\sqrt{{x}^{2}}$,x2},则满足条件的所有x组成的集合的真子集的个数是15个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.椭圆$\frac{x^2}{{{{10}^{\;}}}}+\frac{y^2}{{{m^{\;}}}}=1$的焦距为6,则m的值为(  )
A.m=1B.m=19C.m=1 或 m=19D.m=4或m=16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左、右焦点分别是F1,F2,如果在椭圆上存在一点p,使∠F1PF2为钝角,则椭圆离心率的取值范围是$({\frac{{\sqrt{2}}}{2},1})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=-x2+ax+b的值域为(-∞,0],若关x的不等式$f(x)>-\frac{c}{4}-1$的解集为(m-4,m+1),则实数c的值为21.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=x2-2ax+3在区间[2,3]上是单调函数,则a的取值范围是(-∞,2]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知定义域为R的函数y=f(x)满足f(x+2)=f(x),且-1≤x<1时,f(x)=1-x2;函数g(x)=$\left\{\begin{array}{l}{lg|x|,x≠0}\\{1,x=0}\end{array}\right.$,若F(x)=f(x)-g(x),则x∈[-5,10],函数F(x)零点的个数是15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=$\left\{\begin{array}{l}x^2,x≥0\\ ln(-x),x<0\end{array}$,则函数g(x)=f(x)-x的零点的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案