精英家教网 > 高中数学 > 题目详情
1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,过焦点垂直于长轴的弦的弦长为$\frac{{2\sqrt{3}}}{3}$.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A,B两点,坐标原点O到直线l的距离为$\frac{\sqrt{3}}{2}$,求△AOB面积的最大值.

分析 (1)设椭圆的半焦距为c,依题意$\left\{\begin{array}{l}\frac{c}{a}=\frac{{\sqrt{6}}}{3}\\ \frac{{2{b^2}}}{a}=\frac{{2\sqrt{3}}}{3}\end{array}\right.$,又a2=b2+c2,解出即可得出.
(2)设A(x1,y1),B(x2,y2).①当AB⊥x轴时,|AB|=$\sqrt{3}$.
②当AB与x轴不垂直时,设直线AB的方程为:y=kx+m.由已知:$\frac{|m|}{\sqrt{1+{k}^{2}}}$=$\frac{\sqrt{3}}{2}$,可得m2=$\frac{3}{4}$(k2+1).
把y=kx+m代入椭圆方程,整理得(3k2+1)x2-6kmx+3m2-3=0,利用|AB|2=(1+k2)$[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]$=3+$\frac{12}{9{k}^{2}+\frac{1}{{k}^{2}}+6}$,利用基本不等式的性质即可得出最大值.

解答 解:(1)设椭圆的半焦距为c,依题意$\left\{\begin{array}{l}\frac{c}{a}=\frac{{\sqrt{6}}}{3}\\ \frac{{2{b^2}}}{a}=\frac{{2\sqrt{3}}}{3}\end{array}\right.$,又a2=b2+c2
∴$\left\{\begin{array}{l}a=\sqrt{3}\\ b=1\end{array}\right.$,
故所求椭圆方程为:$\frac{{x}^{2}}{3}$-y2=1.
(2)设A(x1,y1),B(x2,y2).
①当AB⊥x轴时,|AB|=$\sqrt{3}$.
②当AB与x轴不垂直时,设直线AB的方程为:y=kx+m.
由已知:$\frac{|m|}{\sqrt{1+{k}^{2}}}$=$\frac{\sqrt{3}}{2}$,得m2=$\frac{3}{4}$(k2+1).
把y=kx+m代入椭圆方程,整理得(3k2+1)x2-6kmx+3m2-3=0,
∴x1+x2=$\frac{6km}{1+3{k}^{2}}$,x1x2=$\frac{3{m}^{2}-3}{1+3{k}^{2}}$.
∴|AB|2=(1+k2)$[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]$
=(1+k2)$[\frac{36{k}^{2}{m}^{2}}{(1+3{k}^{2})^{2}}-\frac{12({m}^{2}-1)}{1+3{k}^{2}}]$=$\frac{3({k}^{2}+1)(9{k}^{2}+1)}{(3{k}^{2}+1)^{2}}$=3+$\frac{12}{9{k}^{2}+\frac{1}{{k}^{2}}+6}$≤3+$\frac{12}{2×3+6}$=4.
当且仅当$9{k}^{2}=\frac{1}{{k}^{2}}$,即k=$±\frac{\sqrt{3}}{3}$时等号成立.
当k=0时,|AB|=$\sqrt{3}$,
综上所述:|AB|max=2.
所以,当|AB|最大时,△AOB面积取最大值s=$\frac{1}{2}×|AB{|}_{max}×$$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦长问题、三角形面积计算公式、点到直线的距离公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.z+2$\overline{z}$=9+4i(i为虚数单位),则|z|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若sinx+sin($\frac{π}{2}$+x)=$\frac{\sqrt{2}}{3}$,则cos($\frac{π}{4}$-x)等于(  )
A.-$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{2}}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,设A、B、C、D为球O上四点,若AB、AC、AD两两互相垂直,且AB=AC=$\sqrt{6}$,AD=2,则球O的体积为$\frac{32π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设A={(x,y)|y=x+1,x∈R},B={(x,y)|y=-2x+4,x∈R},则A∩B={(1,2)}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.集合A={y|y=2x},B=|x|y=lg(2x-1)},则A∩B=(  )
A.{y|y≥0}B.{x|x$>\frac{1}{2}$}C.{x|0$<x<\frac{1}{2}$}D.{y|y>0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知△ABC的周长为20,A=60°,S△ABC=10$\sqrt{3}$,则a=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.偶函数y=f(x)在区间(-∞,-1]上是增函数,则下列不等式成立的是(  )
A.f(-1)>f($\frac{\sqrt{3}}{3}$)B.f($\sqrt{2}$)>f(-$\sqrt{2}$)C.f(4)>f(3)D.f(-$\sqrt{2}$)>f($\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知曲线y=ex+a与y=(x-1)2恰好存在两条公切线,则实数a的取值范围为(  )
A.(-∞,2ln2+3)B.(-∞,2ln2-3)C.(2ln2-3,+∞)D.(2ln2+3,+∞)

查看答案和解析>>

同步练习册答案