精英家教网 > 高中数学 > 题目详情
7.如图中程序的运行结果是(  )
A.1B.3C.2D.4

分析 模拟程序语言的运行过程,即可得出结论.

解答 解:模拟程序语言得,
a=1,b=2,
计算a=1+2=3,
输出3.
故选:B.

点评 本题考查了程序语言的运行问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设i是虚数单位,若(z-l)(1+i)=1-i,则复数z等于1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对于任意的平面向量$\overrightarrow a$,$\overrightarrow b$,他们的夹角为θ,定义新运算$\overrightarrow a$?$\overrightarrow b$为向量$\overrightarrow a$在向量$\overrightarrow b$上的射影,即$\overrightarrow a$?$\overrightarrow b$=$\overrightarrow a$cosθ,若$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$为平面向量,$\overrightarrow a$,$\overrightarrow c$的夹角为α,$\overrightarrow b$,$\overrightarrow c$的夹角为β,k∈R,则下列运算性质一定成立的是(  )
A.$\overrightarrow a$?$\overrightarrow b$=$\overrightarrow b$?$\overrightarrow a$B.(k$\overrightarrow a$)?$\overrightarrow b$=$\overrightarrow a$?(k$\overrightarrow b$)C.$\overrightarrow a$•($\overrightarrow b$?$\overrightarrow c$)=$\overrightarrow b$•($\overrightarrow a$?$\overrightarrow c$)D.|$\overrightarrow a$?$\overrightarrow b$|=$\frac{|\overrightarrow a•\overrightarrow b|}{\overrightarrow b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.
(1)求证:AC∥DE;
(2)过点B作BF⊥AC于点F,连结EF,试判别四边形BCEF的形状,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{ax+b}{{{x^2}+c}}$(a{N*,b∈R,0<c≤1)定义在[-1,1]上的奇函数,f(x)的最大值为$\frac{1}{2}$,且f(1)>$\frac{2}{5}$.
( I)求函数f(x)的解析式;
( II)判断函数f(x)的单调性;并证明你的结论;
( III)当存在x∈[$\frac{1}{2}$,1]使得不等式f(mx-x)+f(x2-1)>0成立时,请同学们探究实数m的所有可能取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列四个函数中,在定义域上是减函数的是(  )
A.f(x)=$\frac{1}{x}$B.f(x)=x3C.f(x)=-x2D.f(x)=-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知|${\overrightarrow a}$|=$\frac{1}{2}$|${\overrightarrow b}$|,函数f(x)=$\frac{1}{3}$x3+|${\overrightarrow a}$|x2+$\overrightarrow a$•$\overrightarrow b$x-|${\overrightarrow a$+$\overrightarrow b}$|在R上有极值,则向量$\overrightarrow a$与$\overrightarrow b$的夹角的范围是(  )
A.[$0\;,\;\frac{π}{6}$)B.$(\frac{π}{6}\;,\;π)$C.$(\frac{π}{3}\;,\;π)$D.$(\frac{π}{3}\;,\;π$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若sinα=-$\frac{2}{3}$,且α为第四象限角,则tanα的值等于(  )
A.$\frac{2\sqrt{5}}{5}$B.-$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{5}}{2}$D.-$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2sin2x+cos($\frac{π}{3}$-2x).
(1)求f(x)在[0,π]上的减区间;
(2)设△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=2,且向量$\overrightarrow m$=(1,2)与向量$\overrightarrow n$=(sinB,sinC)共线,求$\frac{a}{b}$的值.

查看答案和解析>>

同步练习册答案