精英家教网 > 高中数学 > 题目详情
15.如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.
(1)求证:AC∥DE;
(2)过点B作BF⊥AC于点F,连结EF,试判别四边形BCEF的形状,并说明理由.

分析 (1)利用矩形的性质可得AB∥CD,因此∠DCA=∠CAB,可得∠EDC=∠DCA,即可证明AC∥DE.
(2)通过证明△ABF≌△DCE,BF=CE,及其BF∥CE,即可证明.

解答 (1)证明:∵四边形ABCD是矩形,
∴AB∥CD,∴∠DCA=∠CAB,
∵∠EDC=∠CAB,∴∠EDC=∠DCA,
∴AC∥DE.
(2)解:四边形BCEF是平行四边形.以下给出证明:
∵BF⊥AC∴∠BFC=∠AFB=90°.
∵∠DEC=90,AC∥DE,∴∠ACE=180-∠DEC=90°.
∴∠ACE=∠BFC,∴BF∥CE.
∵AB=CD,∠EDC=∠CAB,∠DEC=∠AFB=90°.
∴△ABF≌△DCE (AAS),
∴BF=CE,
∴四边形BCEF平行四边形.

点评 本题考查了平行四边形与矩形的判定与性质定理、三角形全等的判定与性质定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-a,x≤1}\\{{x}^{2}-3ax+4a,x>1}\end{array}\right.$有三个不同零点,则a的范围是(  )
A.$({\frac{16}{9},2})$B.$({\frac{16}{9},+∞})∪({-∞,0})$C.$({\frac{16}{9},2}]$D.$({\frac{2}{3},2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.集合A={y|y=2x},B=|x|y=lg(2x-1)},则A∩B=(  )
A.{y|y≥0}B.{x|x$>\frac{1}{2}$}C.{x|0$<x<\frac{1}{2}$}D.{y|y>0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知正三棱台(上、下底面是正三角形,上底面的中心在下底面的投影是下底面的中心)的上下底面边长分别是2cm和4cm,侧棱长是$\sqrt{6}$cm,试求该三棱台的侧面积与体积(V棱台=$\frac{1}{3}$(S+$\sqrt{SS′}$+S′)h).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.偶函数y=f(x)在区间(-∞,-1]上是增函数,则下列不等式成立的是(  )
A.f(-1)>f($\frac{\sqrt{3}}{3}$)B.f($\sqrt{2}$)>f(-$\sqrt{2}$)C.f(4)>f(3)D.f(-$\sqrt{2}$)>f($\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=$\frac{1}{\sqrt{4-3x-{x}^{2}}}$+(x+1)0的定义域为(  )
A.[-4,1]B.(-4,1)C.[-4,-1)D.(-4,-1)∪(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图中程序的运行结果是(  )
A.1B.3C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知cot(α+$\frac{π}{3}}$)=-3,则tan(2α-$\frac{π}{3}}$)=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{4}{3}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四组函数中表示同一个函数的是(  )
A.f(x)=x0与 g(x)=1B.f(x)=|x|与$g(x)=\sqrt{x^2}$
C.f(x)=x与 $g(x)=\frac{x^2}{x}$D.$f(x)=\root{3}{x^3}$与 $g(x)={(\sqrt{x})^2}$

查看答案和解析>>

同步练习册答案