精英家教网 > 高中数学 > 题目详情
18.集合A={x|3≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求实数m的取值范围.

分析 根据B⊆A,建立条件关系即可求实数m的取值范围.

解答 解:集合A={x|3≤x≤5},B={x|m+1≤x≤2m-1},
∵B⊆A
①当m+1>2m-1时,即m<2时,B=ϕ,满足B⊆A;
②当m+1≤2m-1,即m≥2时,要使B⊆A成立,
则需$\left\{\begin{array}{l}m+1≥3\\ 2m-1≤5\end{array}\right.$,
解得:2≤m≤3.
综上所述,实数m的取值范围是(-∞,3].

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.若数列…,a-2,a-1,a0,a1,a2,…满足${a_n}=\frac{{{a_{n-1}}+{a_{n+1}}}}{3}({n∈Z})$,则称{an}具有性质A.
(Ⅰ)若数列{an}、{bn}具有性质A,k为给定的整数,c为给定的实数.以下四个数列中哪些具有性质A?请直接写出结论.
①{-an};②{an+bn};③{an+k};④{can}.
(Ⅱ)若数列{an}具有性质A,且满足a0=0,a1=1.
(i)直接写出a-n+an(n∈Z)的值;
(ii)判断{an}的单调性,并证明你的结论.
(Ⅲ)若数列{an}具有性质A,且满足a-2004=a2015.求证:存在无穷多个整数对(l,m),满足at=am(l≠m).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.对某电子元件进行寿命追踪调查,情况如表.
寿命(h)100~200200~300300~400400~500500~600
个  数2030804030
(1)列出频率分布表,并画出频率分布直方图;
(2)从频率分布直方图估计出电子元件寿命的众数、中位数分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.当x∈(0,5]时,函数f(x)=3x2-4x+c的值域为(  )
A.[f(0),f(5)]B.[f(0),f($\frac{2}{3}$)]C.[f($\frac{2}{3}$),f(5)]D.[c,f(5)]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2016年1月2日凌晨某公司公布的元旦全天交易数据显示,天猫元旦当天全天的成交金额为315.5亿元.为了了解网购者一次性购物情况,某统计部门随机抽查了1月1日100名网购者的网购情况,得到如表数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.
网购金额(元)频数频率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.3
(2500,3000]yq
合计1001.00
(1)先求出x,y,p,q的值,再将如图3所示的频率分布直方图绘制完整;
(2)对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据此判断能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?
x网龄3年以上网龄不足3年合计
购物金额在2000元以上35
购物金额在2000元以下20
总计100
参考数据:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(3)从这100名网购者中根据购物金额分层抽出20人给予返券奖励,为进一步激发购物热情,在(2000,2500]和(2500,3000]两组所抽出的8人中再随机抽取2人各奖励1000元现金,求(2000,2500]组获得现金将的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知定义域为R的奇函数f(x),当x>0时,f(x)=x2-3.
(1)求函数f(x)在R上的解析式;
(2)求不等式f(x)>2x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=$\sqrt{-{x}^{2}+4x}$的单调增区间为(  )
A.[0,2]B.(-∞,2]C.[2,4]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.夏天到了,某中学餐饮中心为了解学生对冷冻降暑食品的饮食习惯,在全校二年级学生中进行了抽样调查,调查结果如表所示:
喜欢冷冻不喜欢冷冻合计
女学生602080
男学生101020
合计7030100
(1)根据表中数据,问是否有95%的把握认为“女学生和男学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名高二(15)班的学生,其中2名不喜欢冷冻降暑食品.现在从这5名学生中随机抽取2人,求至多有1人喜欢冷冻降暑食品的概率.
P(χ2≥k)0.1000.0500.010
k2.7063.8416.635
附:(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(b+d)}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求适合下列条件的双曲线的标准方程
(Ⅰ)过点(3,-1),且离心率$e=\sqrt{2}$;
(Ⅱ)一条渐近线为$y=-\frac{3}{2}x$,顶点间距离为6.

查看答案和解析>>

同步练习册答案