精英家教网 > 高中数学 > 题目详情
9.三个函数①$y=\frac{1}{x}$;②y=10lgx;③y=-x3中,在其定义域内是奇函数的个数是(  )
A.0B.1C.2D.3

分析 根据函数奇偶性的定义进行判断即可.

解答 解:①f(-x)=-$\frac{1}{x}$=-f(x),则f(x)是奇函数;
②y=10lgx,定义域关于原点不对称性,不是奇函数,
③f(-x)=x3=-(-x3)=-f(x),则函数f(x)是奇函数,
故在其定义域内是奇函数的个数是2个,
故选:C.

点评 本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知正三棱锥的底面边长为2,高为1.
(1)求该正三棱锥的体积;
(2求该正三棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知角θ的顶点与原点重合,始边与x轴正半轴重合,终边过点P(-1,2),则tan2θ=(  )
A.$\frac{4}{3}$B.$\frac{4}{5}$C.$-\frac{4}{5}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知全集U=R,集M={x|x-3≥0},N={x|-1≤x<4}.
(1)求集合M∩N,M∪N;
(2)求集合∁UN,(∁UN)∩M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C1:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<2)的离心率为$\frac{\sqrt{3}}{2}$,抛物线C2:x2=2py(p>0)的焦点是椭圆的顶点.
(1)求抛物线的方程;
(2)过点M(-1,0)作抛物线的切线l,求切线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线x2=-6by的准线与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右支分别交于B、C两点,A为双曲线的右顶点,O为坐标原点,若∠AOC=∠BOC,则双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.3C.$\frac{4\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图所示,则这个棱柱的侧面积为72.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若f(x)=$\frac{e^x}{x}$,f'(x)为f(x)的导函数,则f'(x)=(  )
A.f'(x)=$-\frac{e^x}{x}$B.f'(x)=$\frac{{x{e^x}-{e^x}}}{x^2}$C.f'(x)=$\frac{{x{e^x}+{e^x}}}{x^2}$D.f'(x)=$\frac{{x{e^x}-{e^x}}}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆的圆心在曲线y2=x上,且与直线x+2y+6=0相切,当圆的面积最小时,其标准方程为(x-1)2+(y+1)2=5.

查看答案和解析>>

同步练习册答案