精英家教网 > 高中数学 > 题目详情
已知a,b是正数,且a+b=1,则
1
a
+
4
b
(  )
A、有最小值8
B、有最小值9
C、有最大值8
D、有最大值9
考点:基本不等式
专题:计算题
分析:将式子“
1
a
+
4
b
”化为(a+b)(
1
a
+
4
b
),化简后利用基本不等式求出式子的最小值.
解答: 解:由a+b=1得,
1
a
+
4
b
=(a+b)(
1
a
+
4
b
)=5+
b
a
+
4a
b

又a、b是正数,
所以
b
a
+
4a
b
≥2
b
a
×
4a
b
=4,当且仅当
b
a
=
4a
b
时取等号,
1
a
+
4
b
≥5+4=9,
1
a
+
4
b
的最小值为9,
故选B.
点评:本题考查了基本不等式的应用:求最值问题,注意三个条件:一正二定三相等,以及“1”的代换问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=π(x-cosx)-2sinx-2,g(x)=(x-π)
1-sinx
1+sinx
+
2x
π
-1.
证明:
(Ⅰ)存在唯一x0∈(0,
π
2
),使f(x0)=0;
(Ⅱ)存在唯一x1∈(
π
2
,π),使g(x1)=0,且对(Ⅰ)中的x0,有x0+x1>π.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x-x2,x≤0
x2+4x,x>0
,若f(a)<f(2-a2),则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是(  )
A、4πB、3πC、2πD、π

查看答案和解析>>

科目:高中数学 来源: 题型:

设F是双曲线
x2
a2
-
y2
b2
=1的焦点,过F作双曲线一条渐近线的垂线,与两条渐近线交于P,Q,若
FP
=3
FQ
,则双曲线的离心率为(  )
A、
6
2
B、
5
2
C、
3
D、
10
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线C:x2=4y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点).
(1)证明:动点D在定直线上;
(2)作C的任意一条切线l(不含x轴),与直线y=2相交于点N1,与(1)中的定直线相交于点N2,证明:|MN2|2-|MN1|2为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:

(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;
(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;
(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.

查看答案和解析>>

科目:高中数学 来源: 题型:

π为圆周率,e=2.71828…为自然对数的底数.
(Ⅰ)求函数f(x)=
lnx
x
的单调区间;
(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数与最小数.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面向量
a
=(1,2),
b
=(4,2),
c
=m
a
+
b
(m∈R),且
c
a
的夹角等于
c
b
的夹角,则m=
 

查看答案和解析>>

同步练习册答案