精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
4x-x2,x≤0
x2+4x,x>0
,若f(a)<f(2-a2),则实数a的取值范围为
 
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:首先判断出函数的单调性,再根据单调性和f(a)<f(2-a2),得到关于a的不等式,解得即可.
解答: 解:∵x2+4x=(x+2)2-4,在x>0上式增函数,
4x-x2=-(x-2)2+4,在x≤0上式减函数,
又f(a)<f(2-a2),
∴a<2-a2
解得-2<a<1.
故答案为:(-2,1).
点评:本题主要考查了函数的单调性和不等式的解法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=lnx+
m
x
,m∈R.
(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;
(Ⅱ)讨论函数g(x)=f′(x)-
x
3
零点的个数;
(Ⅲ)若对任意b>a>0,
f(b)-f(a)
b-a
<1恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[-2,2]内任取一个元素x0,若抛物线y=x2在x=x0处的切线的倾斜角为α,则α∈[
π
3
3
]的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2-2x+
1
2
|,若函数y=f(x)-a在区间[-3,4]上有10个零点(互不相同),则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Rt△ABC中,AB=8,AC=4,BC=4
3
,则对于△ABC所在平面内的一点P,
PA
•(
PB
+
PC
)的最小值是(  )
A、-14B、-8
C、-26D、-30

查看答案和解析>>

科目:高中数学 来源: 题型:

正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为
3
,D为BC中点,则三棱锥A-B1DC1的体积为(  )
A、3
B、
3
2
C、1
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b是正数,且a+b=1,则
1
a
+
4
b
(  )
A、有最小值8
B、有最小值9
C、有最大值8
D、有最大值9

查看答案和解析>>

科目:高中数学 来源: 题型:

π为圆周率,e=2.71828…为自然对数的底数.
(Ⅰ)求函数f(x)=
lnx
x
的单调区间;
(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数和最小数;
(Ⅲ)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.

查看答案和解析>>

同步练习册答案