精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2-2x+
1
2
|,若函数y=f(x)-a在区间[-3,4]上有10个零点(互不相同),则实数a的取值范围是
 
考点:根的存在性及根的个数判断
专题:函数的性质及应用
分析:在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.
解答: 解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2-2x+
1
2
|,若函数y=f(x)-a在区间[-3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知a∈(0,
1
2
)

故答案为:(0,
1
2
).
点评:本题考查函数的图象以函数的零点的求法,数形结合的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=
π
3
,M为BC上的一点,且BM=
1
2
,MP⊥AP.
(Ⅰ)求PO的长;
(Ⅱ)求二面角A-PM-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=π(x-cosx)-2sinx-2,g(x)=(x-π)
1-sinx
1+sinx
+
2x
π
-1.
证明:
(Ⅰ)存在唯一x0∈(0,
π
2
),使f(x0)=0;
(Ⅱ)存在唯一x1∈(
π
2
,π),使g(x1)=0,且对(Ⅰ)中的x0,有x0+x1>π.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若曲线y=ax2+
b
x
(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=1和点A(-2,0),若定点B(b,0)(b≠-2)和常数λ满足:对圆O上任意一点M,都有|MB|=λ|MA|,则:
(Ⅰ)b=
 

(Ⅱ)λ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设不共线的向量
α
β
,|
α
|=2,|
β
|=1,则向量
β
α
-
β
的夹角的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x-x2,x≤0
x2+4x,x>0
,若f(a)<f(2-a2),则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是(  )
A、4πB、3πC、2πD、π

查看答案和解析>>

科目:高中数学 来源: 题型:

π为圆周率,e=2.71828…为自然对数的底数.
(Ⅰ)求函数f(x)=
lnx
x
的单调区间;
(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数与最小数.

查看答案和解析>>

同步练习册答案