精英家教网 > 高中数学 > 题目详情
已知数列中,,设为数列的前n项和,对于任意的都成立,则         .
91

试题分析:∵,∴,∴数列从第二项开始为等差数列,当时,,∴
,故填91.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列.
(1)求数列{an}的公比;
(2)证明:对任意k∈N,Sk+2,Sk,Sk+1成等差数列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的首项为a1=1,其前n项和为Sn,且对任意正整数n有n,an,Sn成等差数列.
(1)求证:数列{Sn+n+2}成等比数列.
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在数列{an}中,已知a1=2,a2=7,an+2等于anan+1(n∈N*)的个位数,则a2013的值是(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}中,a1=1,前n项和Sn=an.
(1)求a2,a3;
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}的前5项和为105,且a10=2a5.
(1)求数列{an}的通项公式;
(2)对任意m∈N*,将数列{an}中不大于72m的项的个数记为bm,求数列{bm}的前m项和Sm.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若数列{an}是等差数列,则数列{bn}也为等差数列.类比这一性质可知,若正项数列{cn}是等比数列,且{dn}也是等比数列,则dn的表达式应为(  )
A.dnB.dn
C.dnD.dn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设正项数列{an}的前n项和是Sn,若{an}和{}都是等差数列,且公差相等.
(1)求{an}的通项公式;
(2)若a1a2a5恰为等比数列{bn}的前三项,记数列cn,数列{cn}的前n项和为Tn,求Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若数列中的最大项是第k项,则k=________.

查看答案和解析>>

同步练习册答案