精英家教网 > 高中数学 > 题目详情
10.某校食堂的原料费支出x与销售额y(单位:万元)之间有如下数据,
x24568
y2535m5575
根据如表中提供的数据,用最小二乘法得出y对x的回归直线方程为${\;}_{y}^{∧}$=8.5x+7.5,则表中m的值为(  )
A.60B.50C.55D.65

分析 根据表中数据计算$\overline{x}$、$\overline{y}$,代入回归直线方程求出m的值.

解答 解:根据表中数据,计算$\overline{x}$=$\frac{1}{5}$×(2+4+5+6+8)=5,
$\overline{y}$=$\frac{1}{5}$×(25+35+m+55+75)=38+$\frac{m}{5}$,
回归直线方程为${\;}_{y}^{∧}$=8.5x+7.5,
∴38+$\frac{m}{5}$=8.5×5+7.5,
解得m=60;
∴表中m的值为60.
故选:A.

点评 本题考查了线性回归方程的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.下列说法不正确的是(  )
A.若“p∧q”为假,则p,q至少有一个是假命题
B.命题“?x∈R,x2-x-1<0”的否定是“?x∈R,x2-x-1≥0”
C.设A,B是两个集合,则“A⊆B”是“A∩B=A”的充分不必要条件
D.当α<0时,幂函数y=xα在(0,+∞)上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设正实数x,y满足$x>\frac{1}{2},y>1$,不等式$\frac{{4{x^2}}}{y-1}+\frac{y^2}{2x-1}≥m$恒成立,则m的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$tanα=\frac{1}{2}$,$tan(2α-β)=\frac{1}{12}$,则tan(α-β)=(  )
A.$-\frac{2}{5}$B.$\frac{2}{5}$C.$-\frac{14}{23}$D.$-\frac{14}{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点F(1,0),过点F的直线l与椭圆交于C,D两点,且点C到焦点的最大距离与最小距离之比为3.
(Ⅰ)求椭圆的方程;
(Ⅱ)若CD与x轴垂直.A、B是椭圆上位于直线CD两侧的动点,满足∠ACD=∠BCD,则直线AB的斜率是否为定值?若是,请求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在下列函数后的横线上分别填上相应图象的序号:
y=x${\;}^{\frac{7}{3}}$④;y=x${\;}^{-\frac{1}{4}}$⑤;y=x${\;}^{-\frac{3}{5}}$①;y=x${\;}^{-\frac{2}{3}}$③;y=x${\;}^{\frac{1}{4}}$②

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对具有线性相关关系的变量x,y,测得一组数据如下
x24568
y2040607080
根据上表,利用最小二乘法得它们的回归直线方程为$\stackrel{∧}{y}$=10.5x+$\stackrel{∧}{a}$,据此模型预测当x=10时,y的估计值为(  )
A.105.5B.106C.106.5D.107

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知在R上可导,F(x)=f(x3-1)+f(1-x3),则F′(1)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC的三个顶点分别是A(4,0),B(0,-2),C(-2,1)
(Ⅰ)求AB边上的高CD所在的直线方程
(Ⅱ)求过点C且在两坐标轴上的截距相等的直线方程.

查看答案和解析>>

同步练习册答案