精英家教网 > 高中数学 > 题目详情
6.已知在R上可导,F(x)=f(x3-1)+f(1-x3),则F′(1)=0.

分析 根据题意,由F(x)的解析式对其求导可得F'(x),将x=0代入,化简变形即可得答案.

解答 解:根据题意,F(x)=f(x3-1)+f(1-x3),
则F'(x)=3x2f'(x3-1)-3x2f'(1-x3),
则F'(1)=3f'(0)-3f'(0)=0.
故答案为:0.

点评 本题考查导数的计算,关键是掌握复合函数导数的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知集合A={x|x2=4},B={x|ax=2}.若B⊆A,则实数a的取值集合是{-1,0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某校食堂的原料费支出x与销售额y(单位:万元)之间有如下数据,
x24568
y2535m5575
根据如表中提供的数据,用最小二乘法得出y对x的回归直线方程为${\;}_{y}^{∧}$=8.5x+7.5,则表中m的值为(  )
A.60B.50C.55D.65

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=$\sqrt{{x}^{2}+1}$-2x,证明:函数f(x)在区间[0,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某产品的广告费用x与销售额y的统计数据如表:
广告费用x(万元)2345
销售额y(万元)26394954
根据如表可以回归方程y=bx+a中的b为9.4,据此模型预报广告费用为6万元时销售额为65.5万元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>0且a≠1)
(Ⅰ)判断函数f(x)的奇偶性,并加以证明;
(Ⅱ)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若曲线y=$\frac{x+1}{x-1}$在点A(3,f(3))处的切线与直线x+my+2=0垂直,则实数m的值为(  )
A.-$\frac{1}{2}$B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x+y-3≥0}\\{x-2y≤0}\end{array}\right.$,若z=x+λy的最小值为6,则λ的值为(  )
A.2B.4C.2和4D.[2,4]中的任意值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,角A、B、C的对边分别为a、b、c,若2bsinB-csinC=asinA,3ac=2b2,则cos2B等于(  )
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{7}{9}$D.-$\frac{2}{3}$

查看答案和解析>>

同步练习册答案