精英家教网 > 高中数学 > 题目详情
16.在△ABC中,角A、B、C的对边分别为a、b、c,若2bsinB-csinC=asinA,3ac=2b2,则cos2B等于(  )
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{7}{9}$D.-$\frac{2}{3}$

分析 由已知利用正弦定理,余弦定理可求cosB,进而利用二倍角的余弦函数公式即可计算得解.

解答 解:∵2bsinB-csinC=asinA,
∴由正弦定理可得:2b2-c2=a2
又∵3ac=2b2
∴由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{b}^{2}}{2×\frac{2{b}^{2}}{3}}$=$\frac{3}{4}$,可得:cos2B=2cos2B-1=2×$\frac{9}{16}$-1=$\frac{1}{8}$.
故选:B.

点评 本题主要考查了正弦定理,余弦定理,二倍角的余弦函数公式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知在R上可导,F(x)=f(x3-1)+f(1-x3),则F′(1)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC的三个顶点分别是A(4,0),B(0,-2),C(-2,1)
(Ⅰ)求AB边上的高CD所在的直线方程
(Ⅱ)求过点C且在两坐标轴上的截距相等的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若z=m2-1+(m2+m)i是纯虚数,则实数m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知x,y的取值如表所示:
x23456
y97865
如果y与x呈线性相关,且线性回归方程为$\widehat{y}$=-$\frac{3}{4}$x+$\widehat{b}$,则$\widehat{b}$=(  )
A.$\frac{21}{2}$B.10C.11D.$\frac{43}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F(c,0),双曲线C上一点N满足|ON|=c,若双曲线的一条渐近线平分∠FON,则双曲线的两条渐近线方程是y=±2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$,(t为参数)曲线C2:$\frac{{x}^{2}}{4}$+y2=4.
(1)在同一平面直角坐标系中,将曲线C2上的点按坐标变换y′=yx,后得到曲线C′.求曲线C′的普通方程,并写出它的参数方程;
(2)若C1上的点P对应的参数为t=$\frac{π}{2}$,Q为C′上的动点,求PQ中点M到直线C3:$\left\{\begin{array}{l}{x=2t}\\{y=4+t}\end{array}\right.$(t为参数)的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若sin53.13°=0.8,则sin(-1026.87°)=0.8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数g(x)=x2+ln(x+a),其中a为常数.
(1)当a=0时,求g(x)在(1,1)处的切线方程;
(2)讨论函数g(x)的单调性;
(3)若g(x)存在两个极值点x1,x2,求证:无论实数a取何值都有$\frac{g({x}_{1})+g({x}_{2})}{2}$>g($\frac{{x}_{1}+{x}_{2}}{2}$).

查看答案和解析>>

同步练习册答案