精英家教网 > 高中数学 > 题目详情
11.已知x,y的取值如表所示:
x23456
y97865
如果y与x呈线性相关,且线性回归方程为$\widehat{y}$=-$\frac{3}{4}$x+$\widehat{b}$,则$\widehat{b}$=(  )
A.$\frac{21}{2}$B.10C.11D.$\frac{43}{4}$

分析 根据表中数据计算$\overline{x}$、$\overline{y}$,代入线性回归方程求出$\widehat{b}$的值.

解答 解:根据表中数据,计算$\overline{x}$=$\frac{1}{5}$×(2+3+4+5+6)=4,
$\overline{y}$=$\frac{1}{5}$×(9+7+8+6+5)=7
代入线性回归方程$\widehat{y}$=-$\frac{3}{4}$x+$\widehat{b}$中,
得$\widehat{b}$=7+$\frac{3}{4}$×4=10.
故选:B.

点评 本题考查了线性回归方程的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.某产品的广告费用x与销售额y的统计数据如表:
广告费用x(万元)2345
销售额y(万元)26394954
根据如表可以回归方程y=bx+a中的b为9.4,据此模型预报广告费用为6万元时销售额为65.5万元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知角α的终边经过点($\frac{3}{5}$,-$\frac{4}{5}$),则α是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.用铁丝制作一个面积为1m2的直角三角形铁框,铁丝的长度最少是(  )
A.5.2mB.5mC.4.8mD.4.6m

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若f(x)=Asin(ωx+φ)+3(ω>0,|φ|<π)对任意实数t,都有f(t+$\frac{π}{3}$ )=f(-t+$\frac{π}{3}$ ).记g(x)=Acos(ωx+φ)-2,则g($\frac{π}{3}$)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,角A、B、C的对边分别为a、b、c,若2bsinB-csinC=asinA,3ac=2b2,则cos2B等于(  )
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{7}{9}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,2)
(1)求($\overrightarrow{a}$$-\overrightarrow{b}$)•($\overrightarrow{a}$$+2\overrightarrow{b}$)
(2)若向量$\overrightarrow{a}$$+λ\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$平行,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设(1+2x)n=a0+a1x+a2x2+…+anxn,且(1+2x)n的展开式中第2项的二项式系数为20,则a1+a2+…+an的值为(  )
A.310-1B.310C.320-1D.320

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.为了研究学生性别与是否喜欢数学课之间的关系,得到列联表如下:
喜欢数学不喜欢数学总计
4080120
40140180
总计80220300
并计算:K2≈4.545
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
参照附表,得到的正确结论是(  )
A.有95%以上把握认为“性别与喜欢数学课有关”
B.有95%以上把握认为“性别与喜欢数学课无关”
C.在犯错误的概率不超过0.5%的前提下,认为“性别与喜欢数学课有关”
D.在犯错误的概率不超过0.5%的前提下,认为“性别与喜欢数学课无关”

查看答案和解析>>

同步练习册答案