18£®ÎªÁËÑо¿Ñ§ÉúÐÔ±ðÓëÊÇ·ñϲ»¶Êýѧ¿ÎÖ®¼äµÄ¹ØÏµ£¬µÃµ½ÁÐÁª±íÈçÏ£º
ϲ»¶Êýѧ²»Ï²»¶Êýѧ×ܼÆ
ÄÐ4080120
Ů40140180
×ܼÆ80220300
²¢¼ÆË㣺K2¡Ö4.545
P£¨K2¡Ýk£©0.1000.0500.0100.001
k2.7063.8416.63510.828
²ÎÕÕ¸½±í£¬µÃµ½µÄÕýÈ·½áÂÛÊÇ£¨¡¡¡¡£©
A£®ÓÐ95%ÒÔÉϰÑÎÕÈÏΪ¡°ÐÔ±ðÓëϲ»¶Êýѧ¿ÎÓйء±
B£®ÓÐ95%ÒÔÉϰÑÎÕÈÏΪ¡°ÐÔ±ðÓëϲ»¶Êýѧ¿ÎÎ޹ء±
C£®ÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.5%µÄǰÌáÏ£¬ÈÏΪ¡°ÐÔ±ðÓëϲ»¶Êýѧ¿ÎÓйء±
D£®ÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.5%µÄǰÌáÏ£¬ÈÏΪ¡°ÐÔ±ðÓëϲ»¶Êýѧ¿ÎÎ޹ء±

·ÖÎö ¸ù¾Ý¹Û²âÖµK2£¬¶ÔÕÕÁÙ½çÖµ±í¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º¸ù¾ÝÁÐÁª±í¼ÆË㣺K2¡Ö4.545£¬
¶ÔÕÕÁÙ½çÖµ±íÖª4.545£¾3.841£¬
ËùÒÔÓÐ95%ÒÔÉϵİÑÎÕÈÏΪ¡°ÐÔ±ðÓëϲ»¶Êýѧ¿ÎÓйء±£®
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªx£¬yµÄȡֵÈç±íËùʾ£º
x23456
y97865
Èç¹ûyÓëx³ÊÏßÐÔÏà¹Ø£¬ÇÒÏßÐԻع鷽³ÌΪ$\widehat{y}$=-$\frac{3}{4}$x+$\widehat{b}$£¬Ôò$\widehat{b}$=£¨¡¡¡¡£©
A£®$\frac{21}{2}$B£®10C£®11D£®$\frac{43}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔÚ¼«×ø±êϵÖУ¬Ö±ÏߦÈ=$\frac{¦Ð}{6}$£¨¦Ñ¡ÊR£©½ØÔ²¦Ñ=2cos£¨¦È-$\frac{¦Ð}{6}$£©ËùµÃÏÒ³¤ÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªsin£¨¦Á+¦Â£©=$\frac{1}{2}$£¬sin£¨¦Á-¦Â£©=$\frac{1}{3}$£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊǢ٢ܣ®
¢Ùsin¦Ácos¦Â=5cos¦Ásin¦Â  
¢Úsin2¦Á=$\frac{2\sqrt{2}+\sqrt{3}}{6}$
¢ÛÈô¦Á£¬¦ÂÊÇÖ±½ÇÈý½ÇÐεÄÁ½¸öÈñ½Ç£¬Ôòtan£¨¦Á-¦Â£©µÄֵΪ$\frac{2\sqrt{5}}{5}$
¢ÜÈô¦Á£¬¦ÂÊÇÒ»¸öÈý½ÇÐεÄÁ½¸öÄڽǣ¬Ôòtan£¨¦Á-¦Â£©µÄ×î´óֵΪ$\frac{2\sqrt{5}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èô¸´ÊýzÂú×ã$\frac{\overline{Z}}{1+i}$=i2017£¬ÆäÖÐiΪÐéÊýµ¥Î»£¬ÔòZ=£¨¡¡¡¡£©
A£®1-iB£®1+iC£®-1-iD£®-1+i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýg£¨x£©=x2+ln£¨x+a£©£¬ÆäÖÐaΪ³£Êý£®
£¨1£©µ±a=0ʱ£¬Çóg£¨x£©ÔÚ£¨1£¬1£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©ÌÖÂÛº¯Êýg£¨x£©µÄµ¥µ÷ÐÔ£»
£¨3£©Èôg£¨x£©´æÔÚÁ½¸ö¼«Öµµãx1£¬x2£¬ÇóÖ¤£ºÎÞÂÛʵÊýaÈ¡ºÎÖµ¶¼ÓÐ$\frac{g£¨{x}_{1}£©+g£¨{x}_{2}£©}{2}$£¾g£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖª½Ç¦ÁµÄÖյ㾭¹ýµãP£¨3£¬-$\sqrt{3}$£©£¬Ôòtan¦ÁµÄÖµÊÇ£¨¡¡¡¡£©
A£®$\sqrt{3}$B£®-$\sqrt{3}$C£®-$\frac{\sqrt{3}}{3}$D£®$\frac{\sqrt{3}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Ä³½ÌʦÓÐÏàͬµÄÓïÎIJο¼Êé3±¾£¬ÏàͬµÄÊýѧ²Î¿¼Êé4±¾£¬´ÓÖÐÈ¡³ö4±¾ÔùË͸ø4ΪѧÉú£¬Ã¿Î»Ñ§Éú1±¾£¬Ôò²»Í¬µÄÔùËÍ·½·¨¹²ÓУ¨¡¡¡¡£©
A£®15ÖÖB£®20ÖÖC£®48ÖÖD£®60ÖÖ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªPµãµÄÖù×ø±êÊÇ£¨2£¬$\frac{¦Ð}{4}$£¬1£©£¬µãQµÄÇòÃæ×ø±êΪ£¨1£¬$\frac{¦Ð}{2}$£¬$\frac{¦Ð}{4}$£©£¬¸ù¾Ý¿Õ¼ä×ø±êϵÖÐÁ½µãA£¨x1£¬y1£¬z1£©£¬B£¨x2£¬y2£¬z2£©Ö®¼äµÄ¾àÀ빫ʽ|AB|=$\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}+£¨{y}_{1}-{y}_{2}£©^{2}+£¨{z}_{1}-{z}_{2}£©^{2}}$£¬¿ÉÖªP¡¢QÖ®¼äµÄ¾àÀëΪ£¨¡¡¡¡£©
A£®$\sqrt{3}$B£®$\sqrt{2}$C£®$\sqrt{5}$D£®$\frac{\sqrt{2}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸