精英家教网 > 高中数学 > 题目详情
13.若复数z满足$\frac{\overline{Z}}{1+i}$=i2017,其中i为虚数单位,则Z=(  )
A.1-iB.1+iC.-1-iD.-1+i

分析 把已知等式变形,然后利用复数代数形式的乘法运算化简$\overline{Z}$,则Z可求.

解答 解:由$\frac{\overline{Z}}{1+i}$=i2017
得$\overline{Z}={i}^{2017}(1+i)=({i}^{4})^{504}i(1+i)$=-1+i,
则Z=-1-i.
故选:C.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若f(x)=Asin(ωx+φ)+3(ω>0,|φ|<π)对任意实数t,都有f(t+$\frac{π}{3}$ )=f(-t+$\frac{π}{3}$ ).记g(x)=Acos(ωx+φ)-2,则g($\frac{π}{3}$)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=log2[(4x+1)•2kx],k∈R是偶函数.
(1)求k的值;
(2)若f(2t2+1)<f(t2-2t+1),求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}为正项数列,a1=1,且对?n∈N*,都有$\frac{{a}_{n+1}}{{a}_{n}}$-$\frac{{a}_{n}}{{a}_{n+1}}$=2($\frac{1}{{a}_{n}}$+$\frac{1}{{a}_{n+1}}$).
(1)求数列{an}的通项公式;
(2)若bn=an•2n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1=1,an+1=$\left\{\begin{array}{l}{\frac{1}{3}{a}_{n}+n,n为奇数}\\{{a}_{n}-3n,n为偶数}\end{array}\right.$.
(1)证明:数列{a2n-$\frac{3}{2}$}是等比数列;     
(2)求a2n及a2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.为了研究学生性别与是否喜欢数学课之间的关系,得到列联表如下:
喜欢数学不喜欢数学总计
4080120
40140180
总计80220300
并计算:K2≈4.545
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
参照附表,得到的正确结论是(  )
A.有95%以上把握认为“性别与喜欢数学课有关”
B.有95%以上把握认为“性别与喜欢数学课无关”
C.在犯错误的概率不超过0.5%的前提下,认为“性别与喜欢数学课有关”
D.在犯错误的概率不超过0.5%的前提下,认为“性别与喜欢数学课无关”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a=tan$\frac{2π}{5}$,b=tan(-$\frac{2π}{3}$),c=cos$\frac{2π}{5}$,则a,b,c的大小关系是(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知m,n表示两条不同的直线,α、β表示两个不同的平面,下列命题中正确的是(  )
A.若m⊥α,m∥n,n?β,则α⊥βB.若平面α⊥β,m⊥α,则m⊥β
C.若m∥α,α∥β,则m∥βD.若直线m∥n,n?α,则m∥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.正六棱锥底边长为1,侧棱与底面所成的角为45°,则它的斜高等于$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

同步练习册答案