精英家教网 > 高中数学 > 题目详情
5.已知a=tan$\frac{2π}{5}$,b=tan(-$\frac{2π}{3}$),c=cos$\frac{2π}{5}$,则a,b,c的大小关系是(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

分析 用诱导公式化简b,再根据三角函数的图象与性质判断a,b,c的大小关系.

解答 解:a=tan$\frac{2π}{5}$,
b=tan(-$\frac{2π}{3}$)=tan(-π+$\frac{π}{3}$)=tan$\frac{π}{3}$=tan$\frac{2π}{6}$,
且0<$\frac{2π}{6}$<$\frac{2π}{5}$<$\frac{π}{2}$,
∴tan$\frac{2π}{5}$>tan$\frac{2π}{6}$,
即b<a;
又c=cos$\frac{2π}{5}$<cos$\frac{π}{3}$<tan$\frac{π}{3}$,
∴c<b,
∴a,b,c的大小关系是c<b<a.
故选:D.

点评 本题考查了三角函数的图象与性质的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x2-2x,g(x)=lnx,函数F(x)=$\left\{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}\right.$,则函数 F(x)的所有零点的和为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
非体育迷体育迷合计
1055
合计
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成上面的2×2列联表,若按95%的可靠性要求,并据此资料,你是否认为“体
育迷”与性别有关?
(2)现在从该地区非体育迷的电视观众中,采用分层抽样方法选取5名观众,求从这5名观众选取两人进行访谈,被抽取的2名观众中至少有一名女生的概率.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z满足$\frac{\overline{Z}}{1+i}$=i2017,其中i为虚数单位,则Z=(  )
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,点P(x0,$\frac{5}{2}$)为双曲线上一点,若△PF1F2的内切圆半径为1,且圆心G到原点O的距离为$\sqrt{5}$,则双曲线的离心率是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知角α的终点经过点P(3,-$\sqrt{3}$),则tanα的值是(  )
A.$\sqrt{3}$B.-$\sqrt{3}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.${∫}_{-1}^{2}$|x|dx等于(  )
A.-1B.1C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知0<α<$\frac{π}{2}$<β<π,又sinα=$\frac{3}{5}$,cos(α+β)=-$\frac{4}{5}$,则sinβ等于(  )
A.0B.$\frac{24}{25}$C.$\frac{16}{25}$D.$\frac{24}{25}$或0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.骨质疏松症被称为“静悄悄的流行病“,早期的骨质疏松症患者大多数无明显的症状,针对中学校园的学生在运动中骨折事故频发的现状,教师认为和学生喜欢喝碳酸饮料有关,为了验证猜想,学校组织了一个由学生构成的兴趣小组,联合医院检验科,从高一年级中按分层抽样的方法抽取50名同学 (常喝碳酸饮料的同学30,不常喝碳酸饮料的同学20),对这50名同学进行骨质检测,检测情况如表:(单位:人)
有骨质疏松症状无骨质疏松症状总计
常喝碳酸饮料的同学22830
不常喝碳酸饮料的同学81220
总计302050
(1)能否据此判断有97.5%的把握认为骨质疏松症与喝碳酸饮料有关?
(2)记常喝碳酸饮料且无骨质疏松症状的8名同学为A,B…G,H,从8名同学中任意抽取两人,对他们今后是否有骨质疏松症状情况进行全程跟踪研究,求A,B至少有一个被抽到的概率.
附表及公式.
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案