精英家教网 > 高中数学 > 题目详情
17.${∫}_{-1}^{2}$|x|dx等于(  )
A.-1B.1C.$\frac{3}{2}$D.$\frac{5}{2}$

分析 根据绝对值的意义,则${∫}_{-1}^{2}$|x|dx=${∫}_{-1}^{0}$(-x)dx+${∫}_{0}^{2}$xdx,求出积分值即可.

解答 解:|x|=$\left\{\begin{array}{l}{x,0≤x≤2}\\{-x,-1≤x<0}\end{array}\right.$,
则 ${∫}_{-1}^{2}$|x|dx
=${∫}_{-1}^{0}$(-x)dx+${∫}_{0}^{2}$xdx
=-$\frac{1}{2}$x2${|}_{-1}^{0}$+$\frac{1}{2}$x2${|}_{0}^{2}$
=$\frac{5}{2}$,
故选:D.

点评 本题考查定积分的运算,考查分类讨论思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.曲线 y=3lnx+$\frac{1}{x}$在点(1,1)处的切线方程为y=2x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1=1,an+1=$\left\{\begin{array}{l}{\frac{1}{3}{a}_{n}+n,n为奇数}\\{{a}_{n}-3n,n为偶数}\end{array}\right.$.
(1)证明:数列{a2n-$\frac{3}{2}$}是等比数列;     
(2)求a2n及a2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a=tan$\frac{2π}{5}$,b=tan(-$\frac{2π}{3}$),c=cos$\frac{2π}{5}$,则a,b,c的大小关系是(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{a}$=(2cosθ,sinθ),$\overrightarrow{b}$=(1,-2).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求$\frac{3sinθ-2cosθ}{2sinθ+cosθ}$的值;
(2)若θ=45°,2$\overrightarrow{a}$-t$\overrightarrow{b}$与$\sqrt{2}$$\overrightarrow{a}$+$\overrightarrow{b}$垂直,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知m,n表示两条不同的直线,α、β表示两个不同的平面,下列命题中正确的是(  )
A.若m⊥α,m∥n,n?β,则α⊥βB.若平面α⊥β,m⊥α,则m⊥β
C.若m∥α,α∥β,则m∥βD.若直线m∥n,n?α,则m∥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a∈(0,1),则不等式ln(3a-1)<0成立的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用数字0,l,2,3,4,5六个数字可以组成无重复的三位数的个数为(  )
A.216B.100C.120D.180

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.学校高一数学考试后,对90分(含90分)以上的成绩进行统计,其频率分布直方图如图所示,分数在120-130分的学生人数为30人
(1)求这所学校分数在90-140分的学生人数
(2)请根据频率分布直方图估计这所学校学生分数在90-140分的学生的平均成绩
(3)为进一步了解学生的学习情况,按分层抽样方法从分数在90-100分和120-130分的学生中抽出5人,从抽出的学生中选出2人分别做问卷A和问卷B,求90-100分的学生做问卷A,120-130分的学生做问卷B的概率.

查看答案和解析>>

同步练习册答案