精英家教网 > 高中数学 > 题目详情
9.已知集合A={x|x2=4},B={x|ax=2}.若B⊆A,则实数a的取值集合是{-1,0,1}.

分析 由题意推导出B=∅或B={-2}或B={2},由此能求出实数a的取值集合.

解答 解:∵集合A={x|x2=4}={-2,2},B={x|ax=2},
当a=0时,B=∅,当a≠0时,B={$\frac{2}{a}$},
∵B⊆A,
∴B=∅或B={-2}或B={2},
当B=∅时,a=0;当B={-2}时,a=-1;当B={2}时,a=1.
∴实数a的取值集合是{-1,0,1}.
故答案为:{-1,0,1}.

点评 本题考查集合的求法,考查子集、空集等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若α,β均是锐角,且α<β,已知cos(α+β)=$\frac{3}{5}$,sin(α-β)=-$\frac{12}{13}$,则sin2α=(  )
A.$-\frac{16}{65}$B.$\frac{56}{65}$C.$\frac{56}{65}$或$\frac{16}{65}$D.$\frac{56}{65}$或$-\frac{16}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法不正确的是(  )
A.若“p∧q”为假,则p,q至少有一个是假命题
B.命题“?x∈R,x2-x-1<0”的否定是“?x∈R,x2-x-1≥0”
C.设A,B是两个集合,则“A⊆B”是“A∩B=A”的充分不必要条件
D.当α<0时,幂函数y=xα在(0,+∞)上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知△ABC的内角A,B,C成等差数列,且A,B,C所对的边分别为a,b,c则下列结论正确的是①②⑤.
①$B=\frac{π}{3}$;
②若b2=ac,则△ABC为等边三角形;
③若a=2c,则△ABC为锐角三角形;
④若${\overrightarrow{AB}^2}=\overrightarrow{AB}•\overrightarrow{AC}+\overrightarrow{BA}•\overrightarrow{BC}+\overrightarrow{CA}•\overrightarrow{CB}$,则3a=c;
⑤若$tanA+tanC+\sqrt{3}=0$,则△ABC为锐角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知对?x∈(0,+∞),不等式2ax>ex-1恒成立,则实数a的最小值是(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知随机变量X服从正态分布N(2,σ2),且P(X<4)=0.6,则P(0<X<2)=(  )
A.0.1B.0.2C.0.3D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设正实数x,y满足$x>\frac{1}{2},y>1$,不等式$\frac{{4{x^2}}}{y-1}+\frac{y^2}{2x-1}≥m$恒成立,则m的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$tanα=\frac{1}{2}$,$tan(2α-β)=\frac{1}{12}$,则tan(α-β)=(  )
A.$-\frac{2}{5}$B.$\frac{2}{5}$C.$-\frac{14}{23}$D.$-\frac{14}{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知在R上可导,F(x)=f(x3-1)+f(1-x3),则F′(1)=0.

查看答案和解析>>

同步练习册答案