精英家教网 > 高中数学 > 题目详情
已知a1=
12
,且Sn=n2an(n∈N*
(1)求a2,a3,a4
(2)猜测{an}的通项公式,并用数学归纳法证明之.
分析:(1)利用数列的前n项和与第n项的关系,得到关于数列的递推关系式,即可求得此数列的前几项.
(2)用数学归纳法证明数列问题时分为两个步骤,第一步,先证明当当n=1时,结论显然成立,第二步,先假设当n=k+1时,有ak=
1
k(k+1)
,利用此假设证明当n=k+1时,结论也成立即可.
解答:解:∵Sn=n2an,∴an+1=Sn+1-Sn=(n+1)2an+1-n2an
an+1=
n
n+2
an

∴(1)a2=
1
6
,a3=
1
12
,a4=
1
20

(2)猜测an=
1
n(n+1)
;下面用数学归纳法证
①当n=1时,结论显然成立.
②假设当n=k时结论成立,即ak=
1
k(k+1)

则当n=k+1时,ak+1=
k
k+2
ak=
k
k+2
×
1
k(k+1)
=
1
(k+1)(k+2)

故当n=k+1时结论也成立.
由①、②可知,对于任意的n∈N*,都有an=
1
n(n+1)
点评:本题主要考查数学归纳法,数学归纳法的基本形式
设P(n)是关于自然数n的命题,若
1°P(n0)成立(奠基)
2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)设{an}是集合{2s+2t|0≤s<t且s,t∈Z}中所有的数从小到大排列成的数列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12,…将数列{an}各项按照上小下大,左小右大的原则写成如下的三角形数表:
3
5     6
9     10    12
------------

①写出这个三角形数表的第四行、第五行各数;
②求a100
(2)设{bn}是集合{2r+2s+2t|0≤r<s<t,且r,s,t∈Z}中所有的数从小到大排列成的数列,已知bk=1160,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一列非零向量
an
,n∈N*,满足:
a1
=(10,-5),
an
=(xnyn)=k(xn-1-yn-1xn-1+yn-1)
,(n32 ).,其中k是非零常数.
(1)求数列{|
an
|}是的通项公式;
(2)求向量
an-1
an
的夹角;(n≥2);
(3)当k=
1
2
时,把
a1
a2
,…,
an
,…中所有与
a1
共线的向量按原来的顺序排成一列,记为
b1
b2
,…,
bn
,…,令
OBn
=
b1
+
b2
+…+
bn
,O为坐标原点,求点列{Bn}的极限点B的坐标.(注:若点坐标为(tn,sn),且
lim
n→∞
tn=t
lim
n→∞
sn=s
,则称点B(t,s)为点列的极限点.)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知S(x)=a1x+a2x2+…+anxn,且a1,a2,…,an组成等差数列,n为正偶数,设S(1)=n2,S(-1)=n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明S(
12
)<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一列非零向
an
满足:
a1
=(x1y1),
an
=(xnyn)=
1
2
(xn-1-yn-1xn-1+yn-1)(n≥2)

(Ⅰ)证明:{|
an
|}
是等比数列;
(Ⅱ)求向量
a
n-1
a
n
的夹角(n≥2)

(Ⅲ)设
a
1
=(1,2),把
a1
a2
,…,
an
,…中所有与
a1
共线的向量按原来的顺序排成
一列,记为
b1
b2
,…,
.
bn
,…,令
OB
n
=
b1
+
b2
+…+
bn
,0
为坐标原点,求点列{Bn}的极限点B的坐标.
(注:若点Bn坐标为(tnsn),且
lim
n→∞
tn=t,
lim
n→∞
sn=s,则称点B(t,s)为点列{Bn}
的极限点.)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案