精英家教网 > 高中数学 > 题目详情

【题目】已知向量 ,设函数.

(1)求函数的最小正周期;

(2)已知分别为三角形的内角对应的三边长, 为锐角, ,且恰是函数上的最大值,求和三角形的面积.

【答案】1;(2.

【解析】试题分析:本题主要考查平面向量的数量积、二倍角公式、两角和的正弦公式、三角函数、余弦定理、三角形面积等基础知识,意在考查考生的运算求解能力、转化化归想象能力和数形结合能力.第一问,先利用向量的数量积得到的解析式,利用降幂公式、倍角公式、两角和的正弦公式化简表达式,使之化简成的形式,利用求函数的周期;第二问,先将代入得到的范围,数形结合得到的最大值,并求出此时的角A,在三角形中利用余弦定理得到边b的值,最后利用求三角形面积.

试题解析:(1

4

因为,所以最小正周期. 6

2)由(1)知,当时,.

由正弦函数图象可知,当时, 取得最大值,又为锐角

所以. 8

由余弦定理,所以

经检验均符合题意. 10

从而当时,的面积11

时,. 12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果方程cos2x-sinx+a=0在(0,]上有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,内角A,B,C所对的边分别为abc,且满足asinA-csinC=b(sinA-sinB).

(Ⅰ)求角C的大小;

(Ⅱ)若边长c=4,求△ABC的周长最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,BC边上的中线AD长为3,且BD=2,sinB=

(Ⅰ)求sin∠BAD的值;

(Ⅱ)求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=elnx,g(x)=f(x)-(x+1).(e=2.718……)

(1)求函数g(x)的极大值;

(2)求证:1++…+>ln(n+1)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是否存在实数a,使得函数y=sin2x+acosx+a-在闭区间[0,]上的最大值是1?若存在,则求出对应的a的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图: 所在平面外一点, 平面.求证:

(1)的垂心;

(2)为锐角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题13)已知函数f(x) (a>0x>0)

(1)求证:f(x)(0,+∞)上是单调递增函数;

(2)f(x)[2]上的值域是[2],求a的值.

查看答案和解析>>

同步练习册答案