精英家教网 > 高中数学 > 题目详情
2.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x=2,n=2,依次输入的a为3,3,7,则输出的s=(  )
A.9B.21C.25D.34

分析 根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.

解答 解:∵输入的x=2,n=2,
当输入的a为3时,S=3,k=1,不满足退出循环的条件;
当再次输入的a为3时,S=9,k=2,不满足退出循环的条件;
当输入的a为7时,S=25,k=3,满足退出循环的条件;
故输出的S值为25,
故选:C.

点评 本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(-2,0).
(1)求|$\overrightarrow{a}$-$\overrightarrow{b}$|;
(2)求向量$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$的夹角;
(3)当t∈R时,求|$\overrightarrow{a}$-t$\overrightarrow{b}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数f(x)=sin2x的图象向右平移$φ({0<φ<\frac{π}{2}})$个单位后得到函数g(x)的图象,若对满足|f(x1)-g(x2)|=2的x1,x2有$|{{x_1}-{x_2}}|=\frac{π}{6}$,则φ等于(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图ABCD为矩形,CDFE为梯形,CE⊥平面ABCD,O为BD的中点,AB=2EF
(Ⅰ)求证:OE∥平面ADF;
(Ⅱ)若ABCD为正方形,求证:平面ACE⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知tan($\frac{π}{4}$+α)=2,求$\frac{sinα+3cosα}{sinα-cosα}$的值;
(2)log3$\sqrt{27}$+lg25+lg4+7${\;}^{lo{g}_{7}2}$+(-9.8)0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.公元263年左右,我国数学家刘徽创立了“割圆术”,并利用“割圆术”得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的n值为(参考数据:$\sqrt{3}≈1.732$,sin15°≈0.2500,sin7.5°≈0.2588)(  )
A.48B.36C.24D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,O为坐标原点,点M,N是双曲线C上异于顶点的关于原点对称的两点,P是双曲线C上任意一点,PM,PN的斜率都存在,则kPM•kPN的值为(  )
A.$\frac{a^2}{b^2}$B.$\frac{b^2}{a^2}$C.$\frac{b^2}{c^2}$D.以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC的顶点A(5,1),AB边上的中线CM所在的直线方程为2x-y-5=0,AC边上的高BH所在直线的方程为x-2y-5=0.
(1)求直线BC的方程;
(2)求直线BC关于CM的对称直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$sinx=\frac{{\sqrt{5}}}{5},({0<x<\frac{π}{2}})$,
(1)求cosx,tanx;
(2)求$\frac{cosx+2sinx}{2cosx-sinx}$.

查看答案和解析>>

同步练习册答案