精英家教网 > 高中数学 > 题目详情
13.“x>2“是“x2+2x-8>0“成立的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

分析 由x2+2x-8>0解得x>2,或x<-4.即可判断出结论.

解答 解:由x2+2x-8>0解得x>2,或x<-4.
∴“x>2“是“x2+2x-8>0“成立的充分不必要条件.
故选:B.

点评 本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C的中心在原点,焦点在x轴上,离心率等于$\frac{1}{2}$,它的一个短轴端点是(0,2$\sqrt{3}$).
(1)求椭圆C的方程;
(2)P(2,3)、Q(2,-3)是椭圆上两点,A、B是椭圆位于直线PQ两侧的两动点,
①若直线AB的斜率为$\frac{1}{2}$,求四边形APBQ面积的最大值;
②当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设AB是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的长轴,若把AB给100等分,过每个分点作AB的垂线,交椭圆的上半部分于P1、P2、…、P99,F1为椭圆的左焦点,则|F1A|+|F1P1|+|F1P2|+…+|F1P99|+|F1B|的值是101a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点F1,F2为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点,若椭圆上存在点P使得$|{\overrightarrow{P{F_1}}}|=2|{\overrightarrow{P{F_2}}}|$,则此椭圆的离心率的取值范围是(  )
A.(0,$\frac{1}{3}$)B.(0,$\frac{1}{2}$]C.($\frac{1}{3}$,$\frac{1}{2}$]D.[$\frac{1}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$α∈(\frac{π}{2},π)$,且sin(π+α)=-$\frac{3}{5}$,则tanα=(  )
A.$-\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中.
(1)|$\overrightarrow{AC}$|=2,AD⊥BC于D,∠BAD=45°,∠DAC=60°,求$\overrightarrow{BD}$•$\overrightarrow{AC}$,$\overrightarrow{BA}$•$\overrightarrow{AC}$.
(2)如果(1)的条件下,△ABC中,PQ是以A为圆心,$\sqrt{2}$为半径的圆的直径,求$\overrightarrow{BP}•\overline{CQ}$的最大值,最小值,并指出取最大值,最小值时向量$\overrightarrow{PQ}$与$\overrightarrow{BC}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.变量x,y满足约束条件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-2≤0\\ y≥1\end{array}\right.$,则目标函数z=x+3y的最小值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知实数a,b满足|a|<2,|b|<2,证明:2|a+b|<|4+ab|;
(2)已知a>0,求证:$\sqrt{{a^2}+\frac{1}{a^2}}$-$\sqrt{2}$≥a+$\frac{1}{a}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,离心率为$\frac{{\sqrt{2}}}{2}$,过点F1且垂直于x轴的直线被椭圆截得的弦长为$\sqrt{2}$,
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点(0,2)是否存在直线l与椭圆交于不同的A,B两点.使OA⊥OB(O为坐标原点).若存在求直线方程,若不存在说明理由.

查看答案和解析>>

同步练习册答案