18£®ÔÚ¡÷ABCÖУ®
£¨1£©|$\overrightarrow{AC}$|=2£¬AD¡ÍBCÓÚD£¬¡ÏBAD=45¡ã£¬¡ÏDAC=60¡ã£¬Çó$\overrightarrow{BD}$•$\overrightarrow{AC}$£¬$\overrightarrow{BA}$•$\overrightarrow{AC}$£®
£¨2£©Èç¹û£¨1£©µÄÌõ¼þÏ£¬¡÷ABCÖУ¬PQÊÇÒÔAΪԲÐÄ£¬$\sqrt{2}$Ϊ°ë¾¶µÄÔ²µÄÖ±¾¶£¬Çó$\overrightarrow{BP}•\overline{CQ}$µÄ×î´óÖµ£¬×îСֵ£¬²¢Ö¸³öÈ¡×î´óÖµ£¬×îСֵʱÏòÁ¿$\overrightarrow{PQ}$Óë$\overrightarrow{BC}$µÄ¼Ð½Ç£®

·ÖÎö £¨1£©½¨Á¢Ö±½Ç×ø±êϵ£¬ÀûÓõãµÄ×ø±ê±íʾÏòÁ¿£¬È»ºóÇó½âÊýÁ¿»ýµÄÖµ£®
£¨2£©ÀûÓÃÏòÁ¿µÄת»¯ÎªÒÑÖªÏòÁ¿µÄ¹ØÏµ£¬Í¨¹ýÏòÁ¿µÄÊýÁ¿»ýÍÆ³öÊýÁ¿»ýµÄ±í´ïʽ£¬È»ºóÇó½â×îÖµ£®

½â´ð ½â£º£¨1£©ÒÔBC£¬DA·Ö±ðΪx£¬yÖáÈçͼ£¬
|$\overrightarrow{AC}$|=2£¬AD¡ÍBCÓÚD£¬¡ÏBAD=45¡ã£¬¡ÏDAC=60¡ã£¬
¿ÉµÃA£¨0£¬1£©£¬B£¨-1£¬0£©£¬C£¨$\sqrt{3}$£¬0£©£¬
D£¨0£¬0£©£¬
$\overrightarrow{BD}$•$\overrightarrow{AC}$=£¨1£¬0£©£¨-1£¬$\sqrt{3}$£©=-1£¬
$\overrightarrow{BA}$•$\overrightarrow{AC}$=£¨1£¬1£©£¨-1£¬$\sqrt{3}$£©=$\sqrt{3}-1$£®
£¨2£©Éè$\overrightarrow{AQ}$ÓëxÖáÕý·½Ïò³É½Ç¦È£¬¼´ÏòÁ¿$\overrightarrow{PQ}$Óë$\overrightarrow{BC}$µÄ¼Ð½ÇΪ£º¦È£®
$\overrightarrow{BP}•\overline{CQ}$=£¨$\overrightarrow{AP}$-$\overrightarrow{AB}$£©•£¨$\overrightarrow{AQ}$-$\overrightarrow{AC}$£©=£¨$\overrightarrow{AP}$-$\overrightarrow{AB}$£©•£¨-$\overrightarrow{AP}$-$\overrightarrow{AC}$£©
=-$\overrightarrow{AP}$2+£¨$\overrightarrow{AB}$-$\overrightarrow{AC}$£©$\overrightarrow{AP}$+$\overrightarrow{AC}$•$\overrightarrow{AB}$
=-${\overrightarrow{AP}}^{2}$+$\overrightarrow{CB}$•$\overrightarrow{AP}$+$\overrightarrow{AC}•\overrightarrow{AB}$--------£¨6·Ö£©
¡ß${\overrightarrow{AP}}^{2}$=2£¬$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|cos¡ÏBAC
=2$\sqrt{2}$cos105¡ã
=1-$\sqrt{3}$----------£¨8·Ö£©
¡à$\overrightarrow{BP}$•$\overrightarrow{CQ}$=-2+$\overrightarrow{CB}$•$\overrightarrow{AP}$+1-$\sqrt{3}$=-1-$\sqrt{3}$+|$\overrightarrow{CB}$|•|$\overrightarrow{AP}$|cos¦È
=-1-$\sqrt{3}$+£¨1+$\sqrt{3}$£©¡Á$\sqrt{2}$cos¦È=-1-$\sqrt{3}$+£¨1+$\sqrt{3}$£©cos¦È---£¨10·Ö£©
µ±$\overrightarrow{CB}$Óë$\overrightarrow{AP}$·½ÏòÏàͬʱ£¬$\overrightarrow{BP}$•$\overrightarrow{CQ}$È¡µÃ×î´óÖµ0£¬´Ëʱ$\overrightarrow{PQ}$Óë$\overrightarrow{BC}$µÄ·½ÏòÏàͬ£»------£¨11·Ö£©
µ±$\overrightarrow{CB}$Óë$\overrightarrow{AP}$·½ÏòÏ෴ʱ£¬$\overrightarrow{BP}$•$\overrightarrow{CQ}$È¡µÃ×îСֵ-2-2$\sqrt{3}$£¬´Ëʱ$\overrightarrow{PQ}$Óë$\overrightarrow{BC}$µÄ·½ÏòÏà·´------£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÏòÁ¿ÔÚ¼¸ºÎÖеÄÓ¦Óã¬ÏòÁ¿µÄ×ø±êÔËËãÒÔ¼°ÊýÁ¿»ýµÄÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªF1£¬F2·Ö±ðΪÍÖÔ²$\frac{{x}^{2}}{2}$+y2=1µÄ×ó¡¢ÓÒ½¹µã£¬¹ýF1µÄÖ±ÏßlÓëÍÖÔ²½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£¬Á¬½ÓAF2ºÍBF2£®
£¨¢ñ£©Çó¡÷ABF2µÄÖܳ¤£»
£¨¢ò£©ÈôAF2¡ÍBF2£¬Çó¡÷ABF2µÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÈçͼËùʾ£¬µãF1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬¶¯µãMµ½µãF2µÄ¾àÀëÊÇ$2\sqrt{2}$£¬Ïß¶ÎMF1µÄÖд¹Ïß½»MF2ÓÚµãP£®
£¨¢ñ£©µ±µãM±ä»¯Ê±£¬Ç󶯵ãPµÄ¹ì¼£GµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßl£ºy=kx+mÓë¹ì¼£G½»ÓÚM¡¢NÁ½µã£¬Ö±ÏßF2MÓëF2NµÄÇãб½Ç·Ö±ðΪ¦Á¡¢¦Â£¬ÇÒ¦Á+¦Â=¦Ð£¬ÇóÖ¤£ºÖ±Ïßl¾­¹ý¶¨µã£¬²¢Çó¸Ã¶¨µãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªOÎª×ø±êÔ­µã£¬FΪÍÖÔ²C£ºx2+$\frac{y^2}{2}$=1ÔÚyÖáÕý°ëÖáÉϵĽ¹µã£¬¹ýFÇÒбÂÊΪ-$\sqrt{2}$µÄÖ±ÏßlÓëC½»ÓëA¡¢BÁ½µã£¬ËıßÐÎOAPBΪƽÐÐËıßÐΣ®
£¨¢ñ£©Ö¤Ã÷£ºµãPÔÚÍÖÔ²CÉÏ£»
£¨¢ò£©ÇóËıßÐÎOAPBµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®¡°x£¾2¡°ÊÇ¡°x2+2x-8£¾0¡°³ÉÁ¢µÄ£¨¡¡¡¡£©
A£®±ØÒª²»³ä·ÖÌõ¼þB£®³ä·Ö²»±ØÒªÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑ֪ʵÊýa£¬bÂú×ãa£¾b£¬ÇÒab=2£¬Ôò$\frac{{a}^{2}+{b}^{2}+1}{a-b}$µÄ×îСֵÊÇ$2\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®4λͬѧ¸÷×ÔÔÚÑô¹âÌåÓýʱ¼ä»î¶¯£¬¿ÉÒÔÑ¡Ôñ×ãÇòºÍÀºÇòÁ½ÏîÔ˶¯ÖÐÒ»ÏÔòÕâÁ½Ïî»î¶¯¶¼ÓÐͬѧѡÔñµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{8}$B£®$\frac{3}{8}$C£®$\frac{5}{8}$D£®$\frac{7}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÔÚ¸´Æ½ÃæÉÏ£¬¸´Êý$\frac{2+4i}{1+i}$¶ÔÓ¦µÄµãλÓÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚÈýÏóÏÞC£®µÚ¶þÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²W£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£¬¹ýÍÖÔ²ÓÒ½¹µãÇÒ´¹Ö±ÓÚxÖáµÄÖ±Ïß½»ÍÖÔ²ËùµÃµÄÏÒµÄÏÒ³¤Îª$\frac{2\sqrt{3}}{3}$£¬¹ýµãAµÄÖ±ÏßÓëÍÖÔ²W½»ÓÚÁíÒ»µãC£¬
£¨¢ñ£©ÇóÍÖÔ²WµÄ±ê×¼·½³Ì
£¨¢ò£©µ±ACµÄбÂÊΪ$\frac{1}{3}$ʱ£¬ÇóÏß¶ÎACµÄ³¤£»
£¨¢ó£©ÉèDÊÇACµÄÖе㣬ÇÒÒÔABΪֱ¾¶µÄԲǡ¹ýµãD£¬ÇóÖ±ÏßACµÄбÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸