分析 实数a,b满足a>b,且ab=2,变形为$\frac{{a}^{2}+{b}^{2}+1}{a-b}$=$\frac{(a-b)^{2}+2ab+1}{a-b}$=(a-b)+$\frac{5}{a-b}$,再利用基本不等式的性质即可得出.
解答 解:∵实数a,b满足a>b,且ab=2,
∴$\frac{{a}^{2}+{b}^{2}+1}{a-b}$=$\frac{(a-b)^{2}+2ab+1}{a-b}$=(a-b)+$\frac{5}{a-b}$≥2$\sqrt{(a-b)•\frac{5}{a-b}}$=2$\sqrt{5}$,当且仅当$b=\frac{\sqrt{13}-\sqrt{5}}{2}$,a=$\frac{\sqrt{13}+\sqrt{5}}{2}$时取等号.
∴$\frac{{a}^{2}+{b}^{2}+1}{a-b}$的最小值是 2$\sqrt{5}$.
故答案为:2$\sqrt{5}$.
点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\frac{{\sqrt{5}}}{3}$ | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{15}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com