精英家教网 > 高中数学 > 题目详情
13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=2,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角等于$\frac{2π}{3}$.

分析 求出$\overrightarrow{a}•\overrightarrow{b}$,代入向量夹角公式计算.

解答 解:∵$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}-\overrightarrow{a}•\overrightarrow{b}$=2,
∴$\overrightarrow{a}•\overrightarrow{b}$=-1.
∴cos<$\overrightarrow{a},\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=-$\frac{1}{2}$.
∴<$\overrightarrow{a},\overrightarrow{b}$>=$\frac{2π}{3}$.
故答案为:$\frac{2π}{3}$.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知实数a,b满足a>b,且ab=2,则$\frac{{a}^{2}+{b}^{2}+1}{a-b}$的最小值是$2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)的定义域为[-1,1],图象如图1所示:函数g(x)的定义域为[-2,2],图象如图2所示,方程f(g(x))=0有m个实数根,方程g(f(x))=0有n个实数根,则m+n=(  )
A.14B.12C.10D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若不等式|x+2|+|2x-1|≥4a-2对一切x∈R都成立,则实数a的取值范围是(-∞,$\frac{9}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在平面直角坐标系xOy中,椭圆W:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,过椭圆右焦点且垂直于x轴的直线交椭圆所得的弦的弦长为$\frac{2\sqrt{3}}{3}$,过点A的直线与椭圆W交于另一点C,
(Ⅰ)求椭圆W的标准方程
(Ⅱ)当AC的斜率为$\frac{1}{3}$时,求线段AC的长;
(Ⅲ)设D是AC的中点,且以AB为直径的圆恰过点D,求直线AC的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,经推出便风靡全国,甚至涌现出一批在微信的朋友圈销售商的人(简称微商),为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过4小时的用户为“微信控”,否则称其为“非微信控”,调查结果如下:

(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取5人中“微信控”与“非微信控”的人数;
(3)从(2)中抽取的5人中在随机抽取2人赠送200元的护肤品套装,求这2人至少有1人为“非微信控”的概率.
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
参数数据:
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3213.8405.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}是以m为首项,m为公差的等差数列,数列{bn}是以m为首项,m为公比的等比数列,其中a2=b2,设Sn是数列{bn}的前n项和,则数列$\left\{{\frac{{4{b_n}}}{{{S_n}{S_{n+1}}}}}\right\}$的前n项和为1-$\frac{1}{{2}^{n+1}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=f(x)是R上的偶函数,设a=ln$\frac{1}{π}$,b=(lnπ)2,c=ln$\sqrt{π}$,当任意x1、x2∈(0,+∞)时,都有(x1-x2)•[f(x1)-f(x2)]<0,则(  )
A.f(a)>f(b)>f(c)B.f(b)>f(a)>f(c)C.f(c)>f(b)>f(a)D.f(c)>f(a)>f(b)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线4x+3y-5=0与圆x2+y2=4相交于A、B两点,则弦长|AB|=2$\sqrt{3}$.

查看答案和解析>>

同步练习册答案