| A. | f(a)>f(b)>f(c) | B. | f(b)>f(a)>f(c) | C. | f(c)>f(b)>f(a) | D. | f(c)>f(a)>f(b) |
分析 根据减函数的定义便可看出f(x)在(0,+∞)上单调递减,根据f(x)为偶函数可以得到f(a)=f(lnπ),而$f(c)=f(\frac{1}{2}lnπ)$,可以比较$lnπ,\frac{1}{2}lnπ$和(lnπ)2的大小,根据减函数的定义即可得出f(a),f(b),f(c)的大小关系,从而找出正确选项.
解答 解:依题意函数y=f(x)在(0,+∞)上为减函数;
∵f(x)是R上的偶函数;
∴f(a)=f(-a)=$f(-ln\frac{1}{π})=f(lnπ)$,$f(c)=f(ln\sqrt{π})=f(\frac{1}{2}lnπ)$;
∵$0<\frac{1}{2}lnπ<lnπ<(lnπ)^{2}$;
∴$f(\frac{1}{2}lnπ)>f(lnπ)>f((lnπ)^{2})$;
即f(c)>f(a)>f(b).
故选:D.
点评 考查偶函数的定义,减函数的定义,以及根据减函数的定义判断一个函数为减函数的方法,对数的运算性质.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 3 | D. | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{7}{2}$ | C. | 5 | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈(0,+∞),$\sqrt{x}$≥log2x | B. | ?x∈(0,+∞),$\sqrt{x}$<log2x | C. | ?x∈(0,+∞),$\sqrt{x}$=log2x | D. | ?x∈(0,+∞),$\sqrt{x}$<log2x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x-2y=0 | B. | 2x+y-5=0 | C. | 2x+y-3=0 | D. | x-2y+4=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com