精英家教网 > 高中数学 > 题目详情
17.上边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为15,18,则输出的a为(  )
A.0B.1C.3D.15

分析 由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.

解答 解:由a=15,b=18,不满足a>b,
则b变为18-15=3,
由b<a,则a变为15-3=12,
由b<a,则a变为12-3=9,
由b<a,则a变为9-3=6,
由b<a,则a变为6-3=3,
由a=b=3,
则输出的a=3.
故选:C.

点评 本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在复平面上,复数$\frac{2+4i}{1+i}$对应的点位于(  )
A.第一象限B.第三象限C.第二象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在平面直角坐标系xOy中,椭圆W:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,过椭圆右焦点且垂直于x轴的直线交椭圆所得的弦的弦长为$\frac{2\sqrt{3}}{3}$,过点A的直线与椭圆W交于另一点C,
(Ⅰ)求椭圆W的标准方程
(Ⅱ)当AC的斜率为$\frac{1}{3}$时,求线段AC的长;
(Ⅲ)设D是AC的中点,且以AB为直径的圆恰过点D,求直线AC的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}是以m为首项,m为公差的等差数列,数列{bn}是以m为首项,m为公比的等比数列,其中a2=b2,设Sn是数列{bn}的前n项和,则数列$\left\{{\frac{{4{b_n}}}{{{S_n}{S_{n+1}}}}}\right\}$的前n项和为1-$\frac{1}{{2}^{n+1}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=cosx•log2|x|的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=f(x)是R上的偶函数,设a=ln$\frac{1}{π}$,b=(lnπ)2,c=ln$\sqrt{π}$,当任意x1、x2∈(0,+∞)时,都有(x1-x2)•[f(x1)-f(x2)]<0,则(  )
A.f(a)>f(b)>f(c)B.f(b)>f(a)>f(c)C.f(c)>f(b)>f(a)D.f(c)>f(a)>f(b)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.向量$\overrightarrow{a}$=(1,-2)与$\overrightarrow{b}$=(3,t)的夹角为θ,$\overrightarrow{c}$=(1,-3),$\overrightarrow{b}$⊥$\overrightarrow{c}$,则cosθ=$\frac{\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,几何体ABCD-B1C1D1中,四边形ABCD为菱形,∠BAD=60°,AB=a,平面B1C1D1∥平面ABCD,BB1、CC1、DD1都垂直于平面ABCD,且BB1=$\sqrt{2}$a,E为CC1的中点,F为AB的中点.
(I)求证:△DB1E为等腰直角三角形;
(Ⅱ)求平面B1DE与平面FDE所成的锐二面角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若集合$A=\{x|\frac{x+5}{x-2}<0\}$,B={x|-4<x<3},则集合A∩B为(  )
A.{x|-5<x<3}B.{x|-4<x<2}C.{x|-4<x<5}D.{x|-2<x<3}

查看答案和解析>>

同步练习册答案