精英家教网 > 高中数学 > 题目详情
4.直角△ABC中,A<C,且cos(A-C)=sinC,则sinC=$\frac{\sqrt{3}}{2}$.

分析 由题意分析可得,角B为直角,可得A+C=$\frac{π}{2}$,再由cos(A-C)=sinC,得2C-A=$\frac{π}{2}$,联立求得C得答案.

解答 解:在直角△ABC中,A<C,
若C为直角,则由cos(A-C)=sinC,得cos(A-$\frac{π}{2}$)=1,
得sinA=1,A=$\frac{π}{2}$,矛盾;
∴B=$\frac{π}{2}$,则A+C=$\frac{π}{2}$,又cos(A-C)=sinC,得cos(C-A)=sinC,
得C+(C-A)=2C-A=$\frac{π}{2}$,
联立$\left\{\begin{array}{l}{A+C=\frac{π}{2}}\\{2C-A=\frac{π}{2}}\end{array}\right.$,解得C=$\frac{π}{3}$.
∴sinC=sin$\frac{π}{3}=\frac{\sqrt{3}}{2}$.
故答案为:$\frac{\sqrt{3}}{2}$.

点评 本题考查三角函数的化简求值,考查了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足a1=4,anan-1-4an-1+4=0(n≥2).
(1)求证:$\{\frac{1}{{{a_n}-2}}\}$为等差数列;
(2)求数列{an}的通项公式;
(3)若对任意的n∈N*,3nk-nan+6≥0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的表面积为(  )
A.100πB.$\frac{500π}{3}$C.50πD.200π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,矩形ABCD和△ABP所在的平面互相垂直,AB=2AD=2,PA=PB.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)若多面体ABCDP的体积是$\frac{2\sqrt{6}}{9}$,求直线PD与平面ABCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)是定义在(-3,0)∪(0,3)上的偶函数,当0<x<3时,f(x)的图象如图所示,则不等式f(x)•cosx<0的解集是(  )
A.(-3,-$\frac{π}{2}$)∪(0,1)∪($\frac{π}{2}$,3)B.(-3,-1)∪(-1,0)∪(0,1)∪(1,3)
C.(-3,-$\frac{π}{2}$)∪(0,1)∪(1,3)D.(-3,-$\frac{π}{2}$)∪(-1,0)∪(0,1)∪($\frac{π}{2}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.O为△ABC平面内一定点,该平面内一动点P满足M={P|$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ(|$\overrightarrow{AB}$|sinB•$\overrightarrow{AB}$+|$\overrightarrow{AC}$|sinC•$\overrightarrow{AC}$),λ>0},则△ABC的(  )一定属于集合M.
A.重心B.垂心C.外心D.内心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=3x+lnx的图象在点(1,f(1))处的切线与直线x+ay+1=0垂直,则a=(  )
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足:$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ x-2y-3≤0\end{array}\right.$,则z=2x+y的最小值(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,棱长为1的正方体ABCD-A1B1C1D1中,P为线段A1B上的动点,则下列结论错误的是(  )
A.DC1⊥D1P
B.若直线l是平面ABCD内的直线,直线m是平面DD1C1C内的直线,若l与m相交,则交点一定在直线CD上
C.若P为A1B上动点,则AP+PD1的最小值为$\frac{\sqrt{2}+\sqrt{6}}{2}$
D.∠PAD1最小为$\frac{π}{4}$

查看答案和解析>>

同步练习册答案