精英家教网 > 高中数学 > 题目详情
15.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的表面积为(  )
A.100πB.$\frac{500π}{3}$C.50πD.200π

分析 设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R-2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R即可求出球的表面积.

解答 解:设正方体上底面所在平面截球得小圆M,
则圆心M为正方体上底面正方形的中心.如图.
设球的半径为R,根据题意得球心到上底面的距离等于(R-2)cm,
而圆M的半径为4,由球的截面圆性质,得R2=(R-2)2+42
解得:R=5.
∴球的表面积为4π•52=100π.
故选:A.

点评 此题主要考查了正方体的性质、垂径定理以及勾股定理等知识,将立体图转化为平面图形是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{x+2,x>a}\\{{x}^{2}+5x+2,x≤a}\end{array}\right.$函数g(x)=f(x)-2x恰有三个不同的零点,则实数a的取值范围是[-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sin(2ωx-$\frac{π}{6}}$)-4sin2ωx+2({ω>0}),其图象与x轴相邻的两个交点的距离为$\frac{π}{2}$.
(I)求函数的f(x)解析式;
(Ⅱ)若将f(x)的图象向左平移m(m>0)个长度单位得到函数g(x)的图象恰好经过点(${-\frac{π}{3}$,0),求当m取得最小值时,g(x)在[${-\frac{π}{6}$,$\frac{7π}{12}}$]上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知两条平行直线a、b,a∥平面α,则b与α的位置关系是b?α或b∥α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集U=R,N={x|$\frac{1}{8}$<2x<1},M={x|y=ln(-x-1)},则图中阴影部分表示的集合是(  )
A.{x|-3<x<-1}B.{x|-3<x<0}C.{x|-1≤x<0}D.{x|x<-3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC和一条索道AC,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登,已知∠ABC=120°,∠ADC=150°,BD=1(千米),AC=3(千米).假设小王和小李徒步攀登的速度为每小时1250米,请问:两位登山爱好者能否在2个小时徒步登上山峰.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a2a4=65,a1+a5=18.
(1)求数列{an}的通项公式和前n项和Sn
(2)设bn=$\frac{n}{(2n+1)Sn}$,数列{bn}的前n项和Tn,证明:Tn<$\frac{1}{2}$对于任意的正整数n均成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.直角△ABC中,A<C,且cos(A-C)=sinC,则sinC=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,既是偶函数又在区间(0,1)上为增函数的是(  )
A.y=ln|x|B.y=x-2C.y=x+sinxD.y=cos(-x)

查看答案和解析>>

同步练习册答案