精英家教网 > 高中数学 > 题目详情
10.已知全集U=R,N={x|$\frac{1}{8}$<2x<1},M={x|y=ln(-x-1)},则图中阴影部分表示的集合是(  )
A.{x|-3<x<-1}B.{x|-3<x<0}C.{x|-1≤x<0}D.{x|x<-3}

分析 阴影部分用集合表示为N∩CUM,只要求出M、N进行集合的运算即可.

解答 解:图中阴影部分表示的集合N∩CUM,
由N={x|$\frac{1}{8}$<2x<1}={x|-3<x<0},M={x|y=ln(-x-1)={x|x<-1},
则CUM={x|x≥-1},
则N∩CUM={x|-1≤x<0}.
故选:C.

点评 正确理解集合M、N所表达的含义,以及真确理解韦恩图所表达的集合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若a>1,设函数f(x)=ax+x-4的零点是x1,g(x)=logax+x-4的零点为x2,则$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$的取值范围是(  )
A.[3.5,+∞)B.[1,+∞)C.[4,+∞)D.[4.5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,且椭圆上一点M与椭圆左右两个焦点构成的三角形周长为4+2$\sqrt{2}$.
(1)求椭圆C的方程;
(2)如图,设点D为椭圆上任意一点,直线y=m和椭圆C交于A、B两点,且直线DA、DB与y轴分别交于P、Q两点,试探究∠PF1F2和∠QF1F2之间的等量关系并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若x是三角形的最小内角,则函数y=sinx+cosx+sinxcosx的取值范围(1,$\frac{1}{2}+\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.平面直角坐标系xOy中,椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的长轴长为2$\sqrt{2}$,抛物线C2:y2=2px(p>0)的焦点F是椭圆C1的右焦点.
(Ⅰ)求椭圆C1与抛物线C2的方程;
(Ⅱ)过点F作直线l交抛物线C2于A,B两点,射线OA,OB与椭圆C1的交点分别为C,D,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=2$\sqrt{6}$$\overrightarrow{OC}$•$\overrightarrow{OD}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的表面积为(  )
A.100πB.$\frac{500π}{3}$C.50πD.200π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设O为坐标原点,点A(2,1),若动点M(x,y)满足不等式组$\left\{\begin{array}{l}2x+y-12≤0\\ x-4y+3≤0\\ x≥1\end{array}\right.$,则使$\overrightarrow{OA}•\overrightarrow{OM}$取得最大值的动点M的个数是(  )
A.存在唯一1个B.存在无数多个C.恰好2个D.至多存在3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)是定义在(-3,0)∪(0,3)上的偶函数,当0<x<3时,f(x)的图象如图所示,则不等式f(x)•cosx<0的解集是(  )
A.(-3,-$\frac{π}{2}$)∪(0,1)∪($\frac{π}{2}$,3)B.(-3,-1)∪(-1,0)∪(0,1)∪(1,3)
C.(-3,-$\frac{π}{2}$)∪(0,1)∪(1,3)D.(-3,-$\frac{π}{2}$)∪(-1,0)∪(0,1)∪($\frac{π}{2}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.非零复数z1,z2满足|z1+z2|=|z1-z2|,u=($\frac{{z}_{1}}{{z}_{2}}$)2,则u(  )
A.u<0B.u>0C.u=0D.以上都可能

查看答案和解析>>

同步练习册答案