精英家教网 > 高中数学 > 题目详情
2.设O为坐标原点,点A(2,1),若动点M(x,y)满足不等式组$\left\{\begin{array}{l}2x+y-12≤0\\ x-4y+3≤0\\ x≥1\end{array}\right.$,则使$\overrightarrow{OA}•\overrightarrow{OM}$取得最大值的动点M的个数是(  )
A.存在唯一1个B.存在无数多个C.恰好2个D.至多存在3个

分析 作出可行域,由数量积可得z=$\overrightarrow{OA}•\overrightarrow{OM}$=3x+y,变形目标函数,平移直线可得答案.

解答 解:作出$\left\{\begin{array}{l}2x+y-12≤0\\ x-4y+3≤0\\ x≥1\end{array}\right.$,所对应的可行域(如图阴影),
设z=$\overrightarrow{OA}•\overrightarrow{OM}$=2x+y,则y=-2x+z,
平移直线2x+z可知,当直线与图中直线2x+y-12=0重合时,目标函数取最大值,
∴使得$\overrightarrow{OA}•\overrightarrow{OM}$取得最大值时的点M的个数是无数个
故选:B.

点评 本题考查简单线性规划,涉及向量的数量积,准确作图是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,两坐标系取相同单位,已知曲线C1的极坐标方程为ρ2-4ρcosθ=0,已知点A的极坐标为(3$\sqrt{2}$,$\frac{π}{4}$),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a,且点A在直线l上.
(1)把曲线C1的极坐标方程化为参数方程;
(2)求曲线C1上任意一点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C的中心在原点,焦点在x轴上,离心率为$\frac{1}{2}$,它的一个顶点恰好是抛物线x2=8$\sqrt{3}$y的焦点.
(I)求椭圆C标准方程;
(Ⅱ)直线x=2,与椭圆交于P,Q两点,A,B是椭圆上位于直线x=2两侧的动点,若直线AB的斜率为$\frac{1}{2}$,求四边形APBQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集U=R,N={x|$\frac{1}{8}$<2x<1},M={x|y=ln(-x-1)},则图中阴影部分表示的集合是(  )
A.{x|-3<x<-1}B.{x|-3<x<0}C.{x|-1≤x<0}D.{x|x<-3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+cx+d既存在极大值又存在极小值,则c的取值范围为c<$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a2a4=65,a1+a5=18.
(1)求数列{an}的通项公式和前n项和Sn
(2)设bn=$\frac{n}{(2n+1)Sn}$,数列{bn}的前n项和Tn,证明:Tn<$\frac{1}{2}$对于任意的正整数n均成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:对任意x∈R,总有2x>0;q:“x>3”是“x>5”的充分不必要条件.则下列命题为真命题的是(  )
A.p∧?qB.p∧qC.?p∧?qD.?p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一个等比数列的第9项是$\frac{4}{9}$,公比是-$\frac{1}{3}$.求它的第1项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C所对的分别为a,b,c,且acosB=(3c-b)cosA.
(1)若asinB=2$\sqrt{2}$,求b;
(2)若a=2$\sqrt{2}$,且△ABC的面积为$\sqrt{2}$,求△ABC的周长.

查看答案和解析>>

同步练习册答案