精英家教网 > 高中数学 > 题目详情
12.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,两坐标系取相同单位,已知曲线C1的极坐标方程为ρ2-4ρcosθ=0,已知点A的极坐标为(3$\sqrt{2}$,$\frac{π}{4}$),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a,且点A在直线l上.
(1)把曲线C1的极坐标方程化为参数方程;
(2)求曲线C1上任意一点到直线l的距离的最大值.

分析 (1)曲线C1的参数方程ρ2-4ρcosθ=0化为普通方程(x-2)2+y2=4,再化为参数方程;
(2)直线l的直角坐标方程为x+y-6=0,可得圆上的点到直线的距离为:d=$\frac{|2+2cost+2sint-6|}{\sqrt{2}}$=$\frac{|2\sqrt{2}sin(t+\frac{π}{4})-4|}{\sqrt{2}}$≤2+2$\sqrt{2}$,即可求曲线C1上任意一点到直线l的距离的最大值.

解答 解:(1)曲线C1的参数方程ρ2-4ρcosθ=0化为普通方程(x-2)2+y2=4,
再化为$\left\{\begin{array}{l}{x=2+2cost}\\{y=2sint}\end{array}\right.$,(0≤t<2π).(5分)
(2)圆(x-2)2+y2=4,所以圆心为(2,0),
由点(3$\sqrt{2}$,$\frac{π}{4}$),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a,且点A在直线l上,可得a=3$\sqrt{2}$,
所以直线l的方程可化为ρcosθ+ρsinθ-6=0,从而直线l的直角坐标方程为x+y-6=0,(7分)
所以圆上的点到直线的距离为:d=$\frac{|2+2cost+2sint-6|}{\sqrt{2}}$=$\frac{|2\sqrt{2}sin(t+\frac{π}{4})-4|}{\sqrt{2}}$≤2+2$\sqrt{2}$,
所以曲线C1上任意一点到直线的距离的最大值2+2$\sqrt{2}$.(10分)

点评 本题考查了极坐标化为直角坐标方程、参数方程化为普通方程、点到直线的距离公式、三角函数的单调性值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设等差数列{an}的前n项和为Sn,若S3=9,S5=30,则a7+a8+a9=63.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.$lg({\sqrt{3}-\sqrt{2}})$与$lg({\sqrt{3}+\sqrt{2}})$的等差中项是(  )
A.0B.$lg\frac{{\sqrt{3}-\sqrt{2}}}{{\sqrt{3}+\sqrt{2}}}$C.$lg({5-2\sqrt{6}})$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a>1,设函数f(x)=ax+x-4的零点是x1,g(x)=logax+x-4的零点为x2,则$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$的取值范围是(  )
A.[3.5,+∞)B.[1,+∞)C.[4,+∞)D.[4.5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若函数f(x)=ax3-bx+4.当x=2时,函数f(x)取得极值$-\frac{4}{3}$.
(1)求函数的解析式;
(2)求函数f(x)在区间[-3,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=x3-2x2-4x-7,其导函数为f′(x),判断下列选项正确的是(  )
A.f(x)的单调减区间是($\frac{2}{3}$,2)
B.f(x)的极小值是-15
C.当a>2时,对任意的x>2且x≠a,恒有f(x)<f(a)+f′(a)(x-a)
D.函数f(x)有且只有两个零点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)$\left\{\begin{array}{l}{lo{g}_{4}x+x-3(x>0)}\\{x-(\frac{1}{4})^{x}+3(x≤0)}\end{array}\right.$若f(x)的两个零点分别为x1,x2,则|x1-x2|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,且椭圆上一点M与椭圆左右两个焦点构成的三角形周长为4+2$\sqrt{2}$.
(1)求椭圆C的方程;
(2)如图,设点D为椭圆上任意一点,直线y=m和椭圆C交于A、B两点,且直线DA、DB与y轴分别交于P、Q两点,试探究∠PF1F2和∠QF1F2之间的等量关系并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设O为坐标原点,点A(2,1),若动点M(x,y)满足不等式组$\left\{\begin{array}{l}2x+y-12≤0\\ x-4y+3≤0\\ x≥1\end{array}\right.$,则使$\overrightarrow{OA}•\overrightarrow{OM}$取得最大值的动点M的个数是(  )
A.存在唯一1个B.存在无数多个C.恰好2个D.至多存在3个

查看答案和解析>>

同步练习册答案