精英家教网 > 高中数学 > 题目详情
9.O为△ABC平面内一定点,该平面内一动点P满足M={P|$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ(|$\overrightarrow{AB}$|sinB•$\overrightarrow{AB}$+|$\overrightarrow{AC}$|sinC•$\overrightarrow{AC}$),λ>0},则△ABC的(  )一定属于集合M.
A.重心B.垂心C.外心D.内心

分析 由题意画出图形,根据正弦定理得出|$\overrightarrow{AB}$|sinB=|$\overrightarrow{AC}$|sinC,代入关系式由向量的减法化简,得出$\overrightarrow{AP}$与$\overrightarrow{AD}$共线,由此得出点P的轨迹,从而得出答案.

解答 解:△ABC中,由正弦定理得,$\frac{|\overrightarrow{AC}|}{sinB}$=$\frac{|\overrightarrow{AB}|}{sinC}$,
即|$\overrightarrow{AB}$|sinB=|$\overrightarrow{AC}$|sinC,
设t=|$\overrightarrow{AB}$|sinB,
代入$\overrightarrow{OP}$,则$\overrightarrow{OP}$=$\overrightarrow{OA}$+λt($\overrightarrow{AB}$+$\overrightarrow{AC}$),
∴D是BC的中点,
∴$\overrightarrow{AB}$+$\overrightarrow{AC}$=2$\overrightarrow{AD}$,
∴$\overrightarrow{OP}$=$\overrightarrow{OA}$+2λt$\overrightarrow{AD}$,且λ、t都是常数,
∴$\overrightarrow{AP}$=2λt$\overrightarrow{AD}$,
∴点P的轨迹是直线AD,
∴△ABC的重心一定属于集合M.
故选:A.

点评 本题考查了向量在平面图形中的应用以及正弦定理、向量的减法和共线的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.如图,在?ABCD中,点E为边AB的中点,BD与CE交于点P,若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$(x,y∈R),则2x+y=$\frac{5}{3}$;若点Q是△BCP内部(包括边界)一动点,且$\overrightarrow{AQ}$=m$\overrightarrow{AB}$+n$\overrightarrow{AD}$(m,n∈R),则m+2n的取值范围为[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC和一条索道AC,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登,已知∠ABC=120°,∠ADC=150°,BD=1(千米),AC=3(千米).假设小王和小李徒步攀登的速度为每小时1250米,请问:两位登山爱好者能否在2个小时徒步登上山峰.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.把函数y=sinx(x∈R)的图象上所有点的横坐标缩短到原来的$\frac{1}{3}$倍(纵坐标不变),再把所得图象上所有点向左平行移动$\frac{π}{3}$个单位长度,得到的图象所表示的函数是(  )
A.y=sin($\frac{1}{3}$x+$\frac{π}{3}$),x∈RB.y=sin(3x+$\frac{π}{3}$),x∈RC.y=sin(3x+$\frac{π}{9}$),x∈RD.y=-sin3x,x∈R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.直角△ABC中,A<C,且cos(A-C)=sinC,则sinC=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,在空间直角坐标系中,正方体ABCD-A1B1C1D1的棱长为1,B1E=$\frac{1}{4}$A1B1,则$\overrightarrow{BE}$=$(0,-\frac{1}{4},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某城区有农民、工人、知识分子家庭共计2 000户,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法的是.(填序号)①②③
①简单随机抽样;②系统抽样;③分层抽样.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.(文)已知非零向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,那么向量$\overrightarrow{a}$+$\overrightarrow{b}$与向量$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,若a=1,c=$\sqrt{3},C=\frac{2π}{3}$,则A=$\frac{π}{6}$.

查看答案和解析>>

同步练习册答案