分析 根据向量数量积的定义先计算($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=0,得到向量$\overrightarrow{a}$+$\overrightarrow{b}$与向量$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为90°.
解答 解:∵|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,
∴($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=|$\overrightarrow{a}$|2-|$\overrightarrow{b}$|2=0,
即($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$),
则向量$\overrightarrow{a}$+$\overrightarrow{b}$与向量$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为90°,
故答案为:90°.
点评 本题主要考查向量夹角的计算,根据向量数量积的定义先计算向量数量积是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 重心 | B. | 垂心 | C. | 外心 | D. | 内心 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{a}$∥$\overrightarrow{b}$ | B. | $\overrightarrow{a}$⊥$\overrightarrow{b}$ | C. | $\overrightarrow{a}$=$\overrightarrow{b}$ | D. | |$\overrightarrow{a}$|=|$\overrightarrow{b}$| |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com