精英家教网 > 高中数学 > 题目详情

【题目】如图,在长方形中, ,现将沿折起,使折到的位置且在面的射影恰好在线段上.

(Ⅰ)证明:

(Ⅱ)求锐二面角的余弦值.

【答案】(Ⅰ)见解析;(Ⅱ) .

【解析】试题分析:(1)先证明平面 ,进而得到平面 ,从而得证;(2) 为原点,建立空间直角坐标系.求出平面与平面的法向量,代入公式得到结果.

试题解析:

(Ⅰ)由题知平面,又平面

平面

平面

平面

平面,所以

(Ⅱ)在中, , 由射影定理知 .

为原点,建立如图所示空间直角坐标系.

, , ,

是平面的一个法向量,

,即

,取,所以

是平面的一个法向量,

,即

,取,所以

设锐二面角的大小为

所以锐二面角余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知ABC分别为△ABC的三边abc所对的角,向量(sin Asin B)(cos Bcos A),且sin 2C.

(1)求角C的大小;

(2)sin Asin Csin B成等差数列,且,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的离心率为,点在椭圆.

求椭圆的方程;

已知为平面内的两个定点,过点的直线与椭圆交于两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等比数列中, ,且 成等差数列.

(Ⅰ)求数列的通项公式;

(Ⅱ)若数列满足,数列的前项和为,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的普通方程为,以原点为极点, 轴的正半轴为极轴建立极坐标系,并取与直角坐标系相同的长度单位,建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求曲线的参数方程;

(Ⅱ)若点分别在曲线上,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若在定义域上不单调,求的取值范围;

(2)设分别是的极大值和极小值,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,D,E分别为AB,AC的中点,,以DE为折痕将折起,使点A到达点P的位置,如图.

(1)证明:

(2)若平面DEP平面BCED,求直线DC与平面BCP所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若为锐角,,求的值;

2)函数,若对任意都有恒成立,求实数的最大值;

3)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某客运公司用两种型号的车辆承担甲、乙两地的长途客运业务,每车每天往返一次.两种型号的车辆的载客量分别是32人和48人,从甲地到乙地的营运成本依次为1500元/辆和2000元/辆.公司拟组建一个不超过21辆车的车队,并要求种型号的车不多于种型号的车5辆.若每天从甲地运送到乙地的旅客不少于800人,为使公司从甲地到乙地的营运成本最小,应配备两种型号的车各多少辆?并求出最小营运成本.

查看答案和解析>>

同步练习册答案