精英家教网 > 高中数学 > 题目详情

已知四边形ABCD满足,E是BC的中点,将△BAE沿AE翻折成,F为的中点.
(1)求四棱锥的体积;
(2)证明:
(3)求面所成锐二面角的余弦值.

(1);(2)证明过程详见解析;(3)

解析试题分析:本题主要考查面面垂直、线面垂直、锥体的体积、线面平行、二面角、向量法等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,由已知条件知,△ABE为等边三角形,所以取AE中点,则,由面面垂直的性质得B1M⊥面AECD,所以是锥体的高,最后利用锥体的计算公式求锥体的体积;第二问,连结DE交AC于O,由已知条件得AECD为棱形,O为DE中点,在中,利用中位线,得,再利用线面平行的判定得面ACF;第三问,根据题意,观察出ME,MD,两两垂直,所以以它们为轴建立空间直角坐标系,得到相关点的坐标以及相关向量的坐标,利用向量法中求平面的法向量的方法求出平面和平面的法向量,最后利用夹角公式求夹角的余弦.
(1)取AE的中点M,连结B1M,因为BA=AD=DC=BC=a,△ABE为等边三角形,则B1M=,又因为面B1AE⊥面AECD,所以B1M⊥面AECD,
所以        4分
(2)连结ED交AC于O,连结OF,因为AECD为菱形,OE=OD所以FO∥B1E,
所以。     7分

(3)连结MD,则∠AMD=,分别以ME,MD,MB1为x,y,z轴建系,则,

,,,所以1,,,设面ECB1的法向量为
令x="1," ,同理面ADB1的法向量为
, 所以
故面所成锐二面角的余弦值为.    12分
考点:面面垂直、线面垂直、锥体的体积、线面平行、二面角、向量法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图6,四棱柱的所有棱长都相等,,四边形和四边形为矩形.
(1)证明:底面;
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在梯形ABCD中,AB//CD,AD=DC=CB=a,,平面平面ABCD,四边形ACFE是矩形,AE=a.
(1)求证:平面ACFE;
(2)求二面角B—EF—D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形与梯形所在的平面互相垂直,的中点.
(1)求证:∥平面
(2)求证:平面平面
(3)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB ≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F.

(1)求证:AD⊥平面CFG;
(2)求平面BCP与平面DCP的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方体的棱长为2,E、F分别是的中点,过、E、F作平面于G.
(l)求证:EG∥
(2)求二面角的余弦值;
(3)求正方体被平面所截得的几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知长方形中,,的中点.将沿折起,使得平面平面.


(1)求证:
(2)若点是线段上的一动点,问点E在何位置时,二面角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

是平面内的三点,设向量,且,则________________。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆锥的高PO=4,底面半径OB=2,D为PO的中点,E为母线PB的中点,F为底面圆周上一点,满足EF⊥DE.

(1)求异面直线EF与BD所成角的余弦值;
(2)求二面角OOFE的正弦值.

查看答案和解析>>

同步练习册答案