如图,正方形
与梯形
所在的平面互相垂直,
,
∥
,
,
,
为
的中点.
(1)求证:
∥平面
;
(2)求证:平面
平面
;
(3)求平面
与平面
所成锐二面角的余弦值.![]()
(1)证明过程详见解析;(2)证明过程详见解析;(3)
.
解析试题分析:本题主要考查中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、二面角等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,作出辅助线MN,N为
中点,在
中,利用中位线得到
,且
,结合已知条件,可证出四边形ABMN为平行四边形,所以
,利用线面平行的判定,得
∥平面
;第二问,利用面面垂直的性质,判断
面
,再利用已知的边长,可证出
,则利用线面垂直的判定得
平面BDE,再利用面面垂直的判定得平面
平面
;第三问,可以利用传统几何法证明二面角的平面角,也可以利用向量法建立空间直角坐标系,求出平面BEC和平面ADEF的法向量,利用夹角公式计算即可.
(1)证明:取
中点
,连结
.![]()
在△
中,
分别为
的中点,所以
∥
,且
.由已知
∥
,
,所以
∥
,且
.所以四边形
为平行四边形,
所以
∥
.
又因为
平面
,且
平面
,
所以
∥平面
. 4分
(2)证明:在正方形
中,
.又因为
平面![]()
平面
,且平面
平面
,
所以
平面
.所以
. 6分
在直角梯形
中,
,
,可得
.
在△
中,
,所以
. 7分
所以
平面
. 8分
又因为
平面
,所以平面
平面
. 9分
(3)(方法一)延长
和
交于
.![]()
在平面
内过
作![]()
科目:高中数学 来源: 题型:解答题
在如图所示的多面体中,底面BCFE是梯形,EF//BC,又EF
平面AEB,AE
EB,AD//EF,BC=2AD=4,EF=3,AE=BE=2,G为BC的中点.
(1)求证:AB//平面DEG;
(2)求证:BD
EG;
(3)求二面角C—DF—E的正弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求以
,
为边的平行四边形的面积;
(2)若|a|=
,且a分别与
,
垂直,求向量a的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四边形ABCD满足
,E是BC的中点,将△BAE沿AE翻折成
,F为
的中点.
(1)求四棱锥
的体积;
(2)证明:
;
(3)求面
所成锐二面角的余弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
是直角梯形,∠
=90°,
∥
,
=1,
=2,又
=1,∠
=120°,
⊥
,直线
与直线
所成的角为60°.
(1)求二面角
的的余弦值;
(2)求点
到面
的距离.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿直线BD将△BCD翻折成△BC
D,使得平面BC
D
平面ABD.![]()
(1)求证:C'D
平面ABD;
(2)求直线BD与平面BEC'所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com