精英家教网 > 高中数学 > 题目详情

如图,是直角梯形,∠=90°,=1,=2,又=1,∠=120°,,直线与直线所成的角为60°.
(1)求二面角的的余弦值;
(2)求点到面的距离.

(1);(2).

解析试题分析:此题可用向量法来求解.(1)由题意易知,则在平面内过点于点,分别以轴,为原点建立空间直角坐标系,找出相应点的坐标,由直线与直线所成角为,求出点的坐标,从而可确定点的坐标,由平面内向量可求得平面平面的法向量,平面法向量为,根据向量的数量积公式,可求出向量夹角的余弦值,从而求出所求二面角的余弦值;(2)先求出平面的法向量,又点在平面内,可求出向量的坐标,由点到平面的向量计算公式可求得点到平面的距离.
试题解析:(1)∵
在平面内,过,建立空间直角坐标系(如图)

由题意有,设

由直线与直线所成的解为,得
,解得
,设平面的一个法向量为
,取,得,平面的法向量取为
所成的角为,则
显然,二面角的平面角为锐角,故二面角的余弦值为.   5分
(2)
设平面的一个法向量,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形与梯形所在的平面互相垂直,的中点.
(1)求证:∥平面
(2)求证:平面平面
(3)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方体的棱长为2,E、F分别是的中点,过、E、F作平面于G.
(l)求证:EG∥
(2)求二面角的余弦值;
(3)求正方体被平面所截得的几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且底面ABCD,,E是PA的中点.

(1)求证:平面平面EBD;
(2)若PA=AB=2,直线PB与平面EBD所成角的正弦值为,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知长方形中,,的中点.将沿折起,使得平面平面.


(1)求证:
(2)若点是线段上的一动点,问点E在何位置时,二面角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形为平行四边形,平面.

(1)若是线段的中点,求证:平面
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,//平面.

(1)求证:平面
(2)求异面直线所成角的余弦值;
(3)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面是直角梯形,平面分别为的中点,

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案