如图,在三棱柱中,平面,,为棱上的动点,.
⑴当为的中点,求直线与平面所成角的正弦值;
⑵当的值为多少时,二面角的大小是45.
(1),(2).
解析试题分析:(1)此小题考查用空间向量解决线面角问题,只需找到面的法向量与线的方向向量,注意用好如下公式:,且线面角的范围为:;(2)此小题考查的是用空间向量解决面面角问题,只需找到两个面的法向量,但由于点坐标未知,可先设出,利用二面角的大小是45,求出点坐标,从而可得到的长度,则易求出其比值.
试题解析:
如图,以点为原点建立空间直角坐标系,依题意得,⑴因为为中点,则,
设是平面的一个法向量,则,得,取,则,设直线与平面的法向量的夹角为,则,所以直线与平面所成角的正弦值为;
⑵设,设是平面的一个法向量,则,取,则,是平面的一个法向量,,得,即,所以当时,二面角的大小是.
考点:运用空间向量解决线面角与面面角问题,要掌握线面角与面面角的公式,要注意合理建系.
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.
(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1夹角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(1)证明:B1C1⊥CE;
(2)求二面角B1-CE-C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,直三棱柱的底面是等腰直角三角形,,侧棱底面,且,是的中点,是上的点.
(1)求异面直线与所成角的大小(结果用反三角函数表示);
(2)若,求线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com