精英家教网 > 高中数学 > 题目详情

如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.

(1)证明:B1C1⊥CE;
(2)求二面角B1-CE-C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

(1)见解析   (2)   (3)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

在空间直角坐标系中,点关于轴的对称点是,则点P 到坐标原点O的距离_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,正方形与矩形所在平面互相垂直,,点的中点.
(1)求证:∥平面;(2)求证:
(3)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABC-A1B1C1中,已知侧面,AB=BC=1,BB1=2,∠BCC1=.
(1) 求证:C1B⊥平面ABC;
(2)设 =l(0≤l≤1),且平面AB1E与BB1E所成的锐二面角  
的大小为30°,试求l的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,平面为棱上的动点,.
⑴当的中点,求直线与平面所成角的正弦值;
⑵当的值为多少时,二面角的大小是45.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求以为边的平行四边形的面积;
(2)若|a|=,且a分别与垂直,求向量a的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体中,在棱上.

(1)求异面直线所成的角;
(2)若二面角的大小为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知向量=(2,4,x),=(2,y,2),若||=6,,则x+y的值是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.

查看答案和解析>>

同步练习册答案