精英家教网 > 高中数学 > 题目详情

【题目】已知圆C的圆心在直线上,且与直线相切于点

1)求圆C的方程;

2)是否存在过点的直线与圆C交于两点,且的面积为O为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.

【答案】1 2

【解析】试题分析:(Ⅰ)过切点P(3,2)且与x+y﹣1=0垂直的直线为y=x﹣5,与直线y=﹣4x联立,解得圆心为(1,﹣4),由此能求出圆的方程.

(Ⅱ)当斜率不存在时,直线l方程为x=1,满足题意;当斜率存在时,设直线l的方程为 y=k(x﹣1),由点到直线距离公式结合已知条件推导出不存在这样的实数k.从而所求的直线方程为x=1.

试题解析:

(1)设圆心坐标为,则圆的方程为:,又与相切,则有,解得:,所以圆的方程为:

(2)由题意得:当存在时,设直线,设圆心到直线的距离为

则有,进而可得:

化简得:,无解;

不存在时,,则圆心到直线的距离,那么,满足题意,所以直线的方程为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.

整理评分数据,将分数以为组距分成组: ,得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:

B餐厅分数频数分布表

分数区间

频数

定义学生对餐厅评价的“满意度指数”如下:

分数

满意度指数

(Ⅰ)在抽样的100人中,求对A餐厅评价“满意度指数”为的人数;

(Ⅱ)从该校在A,B两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A餐厅评价的“满意度指数”比对B餐厅评价的“满意度指数”高的概率;

(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某钢厂打算租用 两种型号的火车车皮运输900吨钢材, 两种车皮的载货量分别为36吨和60吨,租金分别为1.6万元/个和2.4万元/个,钢厂要求租车皮总数不超过21个,且型车皮不多于型车皮7个,分别用 表示租用 两种车皮的个数.

(Ⅰ)用 列出满足条件的数学关系式,并画出相应的平面区域;

(Ⅱ)分别租用 两种车皮的个数是多少时,才能使得租金最少?并求出此最小租金.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形ABCD中,边AB、AD的长分别为2,1,若M,N分别是边BC、CD上的点,且满足 = =λ.

(1)当λ= 时,求向量 夹角的余弦值;
(2)求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知长方形中, 的中点,将沿折起,使得平面平面,设点是线段上的一动点(不与 重合).

(Ⅰ)当时,求三棱锥的体积;

(Ⅱ)求证: 不可能与垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据统计,某物流公司每天的业务中,从甲地到乙地的可配送的货物量的频率分布直方图,如图所示,将频率视为概率,回答以下问题.

(1)求该物流公司每天从甲地到乙地平均可配送的货物量;

(2)该物流公司拟购置货车专门运营从甲地到乙地的货物,一辆货车每天只能运营一趟,每辆车每

趟最多只能装载40 件货物,满载发车,否则不发车。若发车,则每辆车每趟可获利1000 元;若未发车,

则每辆车每天平均亏损200 元。为使该物流公司此项业务的营业利润最大,该物流公司应该购置几辆货

车?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是等差数列的前项和,已知 .

1)求

2若数列求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列五个结论:
①在△ABC中,若sinA>sinB,则必有cosA<cosB;
②在△ABC中,若a,b,c成等比数列,则角B的取值范围为
③等比数列{an}中,若a3=2,a7=8,则a5=±4;
④等差数列{an}的前n项和为Sn , S10<0且S11=0,满足Sn≥Sk对n∈N*恒成立,则正整数k构成集合为{5,6}
⑤若关于x的不等式(a2﹣1)x2﹣(a﹣1)x﹣1<0的解集为R,则a的取值范围为
其中正确结论的序号是 . (填上所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,正确的是( )

①两个平面同时垂直第三个平面,则这两个平面可能互相垂直

②方程 表示经过第一、二、三象限的直线

③若一个平面中有4个不共线的点到另一个平面的距离相等,则这两个平面平行

④方程可以表示经过两点的任意直线

A. ②③ B. ①④ C. ①②④ D. ①②③④

查看答案和解析>>

同步练习册答案