精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=cos4x+2sinxcosx-sin4x+1
(1)求f(x)的最小正周期.
(2)求f(x)的单调区间.

分析 (1)根据二倍角公式化为f(x)=$\sqrt{2}sin(2x+\frac{π}{4})+1$,从而求出函数的最小正周期;(2)由(1)结合正弦函数的单调性解不等式,从而求出函数的单调区间即可.

解答 解:(1)f(x)=cos2x+sin2x+1=$\sqrt{2}sin(2x+\frac{π}{4})+1$…(4分)
∴f(x)的最小正周期$T=\frac{2π}{2}=π$.…(6分)
(2)由$-\frac{π}{2}+2kπ≤2x+\frac{π}{4}≤\frac{π}{2}+2kπ$,k∈Z得$-\frac{3π}{8}+kπ≤x≤\frac{π}{8}+kπ$,k∈Z
∴f(x)的单调递增区间是$[-\frac{3π}{8}+kπ,\frac{π}{8}+kπ]$(k∈Z); …(9分)
由$\frac{π}{2}+2kπ≤2x+\frac{π}{4}≤\frac{3π}{2}+2kπ$,k∈Z得$\frac{π}{8}+kπ≤x≤\frac{5π}{8}+kπ$,k∈Z.
∴f(x)的单调递减区间是$[\frac{π}{8}+kπ,\frac{5π}{8}+kπ]$(k∈Z).…(12分)

点评 本题考查了三角函数的恒等变换,函数的周期性,考查函数的单调性问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.随州市汽车配件厂,是生产某配件的专业厂家,每年投入生产的固定成本为40万元,每生产1万件该配件还需要再投入16万元,该厂信誉好,产品质量过硬,该产品投放市场后供应不求,若该厂每年生产该配件x万件,每万件的销售收入为R(x)万元,且R(x)=$\left\{\begin{array}{l}{400-6x,0<x≤40}\\{\frac{7400}{x}-\frac{40000}{{x}^{2}},x>40}\end{array}\right.$.
(1)写出年利润关于年产量x(万件)的函数解析式;
(2)当年产量为多少万件时,该厂获得的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,某地区有7条南北向街道,5条东西街道,从A点走向B点最短的走法中,必须经过C点的概率(  )
A.$\frac{3}{7}$B.$\frac{6}{7}$C.$\frac{3}{10}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=Asin(ωx+φ)(A,ω>0,0<|φ|<π)在一个周期内的图象如图所示.
(1)求函数f(x)的解析式;
(2)求g(x)=f(3x+$\frac{π}{4}$)-1在[-$\frac{π}{6}$,$\frac{π}{3}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题“若x>2,则x2+x>6”的逆否命题是(  )
A.若x>2,则x2+x≤6B.若x2+x≤6,则x≤2C.若x2+x<6,则x<2D.若x≤2,则x2+x≤6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C:x2-y2+2x-4y+3=0.
(1)若直线l与圆C相切,且在x轴和y轴上的截距相等,求直线l的方程;
(2)从圆C外一点P引该圆的一条切线,切点为M,若|PM|=|PO|(O)为坐标原点,求点P的轨迹方程及|PM|最小点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)满足f(x)=x2lnx+3xf′(1)-1,则f′(1)等于(  )
A.-$\frac{1}{2}$B.-$\frac{1}{3}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2-t}\\{y=\sqrt{3}t}\end{array}\right.$(t为参数),当t=-1时,对应曲线C1上一点A且点A关于原点的对称点为B,以原点O为极点,以x轴为正半轴为极轴建立坐标系,曲线C2的极坐标方程为ρ=$\frac{6}{\sqrt{9-3si{n}^{2}θ}}$.
(1)求A,B两点的极坐标;
(2)设P为曲线C2上动点,求|PA|2+|PB|2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在极坐标系中,已知圆C圆心的极坐标为($\sqrt{2}$,$\frac{π}{4}$),半径为$\sqrt{3}$.
(1)求圆C的极坐标方程;
(2)以极点为原点,以极轴为x轴正半轴建立直角坐标系,已知直线l的参数方程为$\left\{\begin{array}{l}{x=2+tcosα}\\{y=2+tsinα}\end{array}\right.$(t为参数),直线l交圆C于A、B两点,且|AB|∈[2$\sqrt{2}$,2$\sqrt{3}$),求直线l的斜率k的取值范围.

查看答案和解析>>

同步练习册答案