精英家教网 > 高中数学 > 题目详情
8.如图,某地区有7条南北向街道,5条东西街道,从A点走向B点最短的走法中,必须经过C点的概率(  )
A.$\frac{3}{7}$B.$\frac{6}{7}$C.$\frac{3}{10}$D.$\frac{7}{10}$

分析 先求出从A到B最短的走法的种数,再求出从A点走向B点最短的走法中,必须经过C点的走法种数,由此能求出从A点走向B点最短的走法中,必须经过C点的概率.

解答 解:10条街道分成6段,每条南北向街道被分成4段,
从A到B最短的走法,无论怎样走,一定包括10段,其中6段方向相同,另4段方向也相同,
每条走法,即是从10段中选出6条,这6段是东西方向的(剩下4段即是走南北方向的),
共有${C}_{10}^{6}$=${C}_{10}^{4}$=210种,
从A点走向B点最短的走法中,必须经过C点,
先从A到C,最短走法有C${\;}_{4}^{2}$=6种,从C到B,最短走法有${C}_{6}^{4}$=15种,
∴从A点走向B点最短的走法中,必须经过C点的概率P=$\frac{{C}_{4}^{2}•{C}_{6}^{4}}{{C}_{10}^{6}}$=$\frac{3}{7}$.
故选:A.

点评 本题考查概率的求法,是中档题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知$\overrightarrow{a}$=(1,-3,1),$\overrightarrow{b}$=(-1,1,-3),则|$\overrightarrow{a}$-$\overrightarrow{b}$|=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某企业为了研究员工工作积极性和对待企业改革态度的关系,随机抽取了80名员工进行调查,所得的数据如表所示:
积极支持改革不太支持改革合    计
工作积极501060
工作一般101020
合    计602080
根据上述数据能得出的结论是(参考公式与数据:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(b+c)(a+c)(b+d)}$(其中n=a+b+c+d);当Χ2>3.841时,有95%的把握说事件A与B有关;当Χ2>6.635时,有99%的把握说事件A与B有关; 当Χ2<3.841时认为事件A与B无关.)(  )
A.有99%的把握说事件A与B有关B.有95%的把握说事件A与B有关
C.有90%的把握说事件A与B有关D.事件A与B无关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某村投资128万元建起了一处生态采摘园,预计在经营过程中,第一年支出10万元,以后每年支出都比上一年增加4万元,从第一年起每年的销售收入都为76万元.设y表示前n(n∈N*)年的纯利润总和(利润总和=经营总收入-经营总支出-投资).
(1)该生态园从第几年开始盈利?
(2)该生态园前几年的年平均利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在长为4cm的线段AB上任取一点C,现作一矩形,邻边长等于线段AC,CB的长,则矩形面积小于3cm2的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow m=({\sqrt{3}cosx,-1}),\overrightarrow n=({sinx,{{cos}^2}x})$,函数$f(x)=\overrightarrow m•\overrightarrow n+\frac{1}{2}$.
(1)若$x∈[{0,\frac{π}{4}}],f(x)=\frac{{\sqrt{3}}}{3}$,求cos2x的值;
(2)在△ABC中,角A,B,C对边分别是a,b,c,且满足$2bcosA≤2c-\sqrt{3}a$,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,在区间(-1,$\frac{π}{2}$)上单调递减的函数为(  )
A.y=x2B.y=3x-1C.y=log2(x+1)D.y=-sinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=cos4x+2sinxcosx-sin4x+1
(1)求f(x)的最小正周期.
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.命题p:实数x满足$\frac{x+m}{x+3m}$<0,其中m<0;命题q:实数x满足x2-x-6<0或x2+2x-8<0,且¬p是¬q的必要不充分条件,求m的取值范围.

查看答案和解析>>

同步练习册答案