精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和是Sn , 且Sn+ an=1(n∈N+
(1)求数列{an}的通项公式;
(2)设bn= (1﹣Sn+1)(n∈N+),令Tn= ,求Tn

【答案】
(1)解:当n=1时,a1=S1,由 ,得:

当n≥2时,

,即

所以

,∴

故数列{an}是以 为首项, 为公比的等比数列.

(n∈N*).


(2)解:∵ ,∴

所以,Tn= = =


【解析】(1)首先由递推式求出a1 , 取n=n﹣1(n≥2)得另一递推式,两式作差后可证出数列{an}是等比数列,则其通项公式可求;(2)把(1)中求出的an代入递推式,则可求出1﹣Sn+1 , 整理后得到bn , 最后利用裂项相消求Tn
【考点精析】根据题目的已知条件,利用等差数列的通项公式(及其变式)和等比数列的通项公式(及其变式)的相关知识可以得到问题的答案,需要掌握通项公式:;通项公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】两个非零向量 不共线.
(1)若 = + =2 +8 =3( ),求证:A、B、D三点共线;
(2)求实数k使k + 与2 +k 共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中, , , 分别为上的点

1中点时,求证:

2上运动时,求三棱锥体积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,40:59岁之间进行了统计,相关数据如下:

100﹣500元

600﹣1000

总计

20﹣39

10

6

16

40﹣59

15

19

34

总计

25

25

50

(1)用分层抽样的方法在缴费100:500元之间的村民中随机抽取5人,则年龄在20:39岁之间应抽取几人?
(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆);

轿车A

轿车B

轿车C

舒适型

100

150

z

标准型

300

450

600

按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,且对任意非负整数均有:

(1)求

(2)求证:数列是等差数列,并求的通项;

(3)令,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱底面 的中点, ,四棱锥的体积为.

(Ⅰ)求证: 平面

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足Sn=2n﹣an(n∈N*).
(1)计算a1 , a2 , a3 , a4 , 并由此猜想通项公式an
(2)用数学归纳法证明(Ⅰ)中的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足:a3=6,a5+a7=24,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn= (n∈N+),求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案