精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足,且对任意非负整数均有:

(1)求

(2)求证:数列是等差数列,并求的通项;

(3)令,求证:

【答案】(1) ;(2);(3)证明见解析.

【解析】试题分析:(1)对mn赋值,想方设法将条件变出.为了得到,显然令m=n即可.

为了得到,令m=1n0即可.

2)首先要想办法得相邻两项(三项也可)间的递推关系.

要证数列是等差数列,只需证明为常数即可.

3)数列中有关和的不等式的证明一般有以下两种方向,一是先求和后放缩,二是先放缩后求和.在本题中,易得

这是典型的用裂项法求和的题.故先求出和来,然后再用放缩法证明不等式.

试题解析:(1)令1

,得3

2)令,得:

,又

数列是以2为首项,2为公差的等差数列.

9

3

13

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,某抛物线的顶点为原点,焦点为圆心,经过点的直线交圆 两点,交此抛物线于 两点,其中 在第一象限, 在第二象限.

(1)求该抛物线的方程;

(2)是否存在直线,使的等差中项?若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有高级教师20人,中级教师30人,其他教师若干人,为了了解该校教师的工资收入情况,拟按分层抽样的方法从该校所有的教师中抽取20人进行调查.已知从其他教师中共抽取了10人,则该校共有教师人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次不等式mx2﹣(1﹣m)x+m≥0的解集为R,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和是Sn , 且Sn+ an=1(n∈N+
(1)求数列{an}的通项公式;
(2)设bn= (1﹣Sn+1)(n∈N+),令Tn= ,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=log2 +a).
(1)当a=1时,解不等式f(x)<0;
(2)若a>0,不等式f(x)<log2(x+ )恒成立,求a的取值范围;
(3)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中心在原点,焦点在轴上的椭圆,下顶点,且离心率.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)经过点且斜率为的直线交椭圆于 两点.在轴上是否存在定点,使得恒成立?若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面是等边三角形,已知

(1)设上的一点,证明:平面平面

(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为等腰梯形, ,将沿折起,使得平面平面的中点,连接 (如图2).

(1)求证: ;

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

同步练习册答案