【题目】已知数列满足,且对任意非负整数均有: .
(1)求;
(2)求证:数列是等差数列,并求的通项;
(3)令,求证:
科目:高中数学 来源: 题型:
【题目】已知圆,某抛物线的顶点为原点,焦点为圆心,经过点的直线交圆于, 两点,交此抛物线于, 两点,其中, 在第一象限, , 在第二象限.
(1)求该抛物线的方程;
(2)是否存在直线,使是与的等差中项?若存在,求直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校有高级教师20人,中级教师30人,其他教师若干人,为了了解该校教师的工资收入情况,拟按分层抽样的方法从该校所有的教师中抽取20人进行调查.已知从其他教师中共抽取了10人,则该校共有教师人.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和是Sn , 且Sn+ an=1(n∈N+)
(1)求数列{an}的通项公式;
(2)设bn= (1﹣Sn+1)(n∈N+),令Tn= ,求Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,函数f(x)=log2( +a).
(1)当a=1时,解不等式f(x)<0;
(2)若a>0,不等式f(x)<log2(x+ )恒成立,求a的取值范围;
(3)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中心在原点,焦点在轴上的椭圆,下顶点,且离心率.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)经过点且斜率为的直线交椭圆于, 两点.在轴上是否存在定点,使得恒成立?若存在,求出点坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com